288 lines
8.8 KiB
Julia
288 lines
8.8 KiB
Julia
using Flux, Test, Statistics
|
||
using Zygote: pullback
|
||
|
||
trainmode(f, x...) = pullback(f, x...)[1]
|
||
trainmode(f) = (x...) -> trainmode(f, x...)
|
||
|
||
@testset "Dropout" begin
|
||
x = [1.,2.,3.]
|
||
@test x == Dropout(0.1)(x)
|
||
@test x == trainmode(Dropout(0), x)
|
||
@test zero(x) == trainmode(Dropout(1), x)
|
||
|
||
x = rand(100)
|
||
m = Dropout(0.9)
|
||
y = trainmode(m, x)
|
||
@test count(a->a==0, y) > 50
|
||
y = m(x)
|
||
@test count(a->a==0, y) == 0
|
||
y = trainmode(m, x)
|
||
@test count(a->a==0, y) > 50
|
||
|
||
x = rand(Float32, 100)
|
||
m = Chain(Dense(100,100),
|
||
Dropout(0.9))
|
||
y = trainmode(m, x)
|
||
@test count(a->a == 0, y) > 50
|
||
y = m(x)
|
||
@test count(a->a == 0, y) == 0
|
||
|
||
x = rand(100, 50)
|
||
m = Dropout(0.5, dims = 2)
|
||
y = m(x)
|
||
c = map(i->count(a->a==0, @view y[i, :]), 1:100)
|
||
@test minimum(c) == maximum(c)
|
||
m = Dropout(0.5, dims = 1)
|
||
y = m(x)
|
||
c = map(i->count(a->a==0, @view y[:, i]), 1:50)
|
||
@test minimum(c) == maximum(c)
|
||
end
|
||
|
||
@testset "BatchNorm" begin
|
||
let m = BatchNorm(2), x = [1.0 3.0 5.0;
|
||
2.0 4.0 6.0]
|
||
|
||
@test m.β == [0, 0] # initβ(2)
|
||
@test m.γ == [1, 1] # initγ(2)
|
||
# initial m.σ is 1
|
||
# initial m.μ is 0
|
||
|
||
y = trainmode(m, x)
|
||
@test isapprox(y, [-1.22474 0 1.22474; -1.22474 0 1.22474], atol = 1.0e-5)
|
||
# julia> x
|
||
# 2×3 Array{Float64,2}:
|
||
# 1.0 3.0 5.0
|
||
# 2.0 4.0 6.0
|
||
#
|
||
# μ of batch will be
|
||
# (1. + 3. + 5.) / 3 = 3
|
||
# (2. + 4. + 6.) / 3 = 4
|
||
#
|
||
# ∴ update rule with momentum:
|
||
# .1 * 3 + 0 = .3
|
||
# .1 * 4 + 0 = .4
|
||
@test m.μ ≈ reshape([0.3, 0.4], 2, 1)
|
||
|
||
# julia> .1 .* var(x, dims = 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.]
|
||
# 2×1 Array{Float64,2}:
|
||
# 1.3
|
||
# 1.3
|
||
@test m.σ² ≈ .1 .* var(x, dims = 2, corrected=false) .* (3 / 2).+ .9 .* [1., 1.]
|
||
|
||
x′ = m(x)
|
||
@test isapprox(x′[1], (1 .- 0.3) / sqrt(1.3), atol = 1.0e-5)
|
||
end
|
||
|
||
# with activation function
|
||
let m = BatchNorm(2, sigmoid), x = [1.0 3.0 5.0;
|
||
2.0 4.0 6.0]
|
||
y = m(x)
|
||
@test isapprox(y, sigmoid.((x .- m.μ) ./ sqrt.(m.σ² .+ m.ϵ)), atol = 1.0e-7)
|
||
end
|
||
|
||
let m = trainmode(BatchNorm(2)), x = reshape(Float32.(1:6), 3, 2, 1)
|
||
y = reshape(permutedims(x, [2, 1, 3]), 2, :)
|
||
y = permutedims(reshape(m(y), 2, 3, 1), [2, 1, 3])
|
||
@test m(x) == y
|
||
end
|
||
|
||
let m = trainmode(BatchNorm(2)), x = reshape(Float32.(1:12), 2, 3, 2, 1)
|
||
y = reshape(permutedims(x, [3, 1, 2, 4]), 2, :)
|
||
y = permutedims(reshape(m(y), 2, 2, 3, 1), [2, 3, 1, 4])
|
||
@test m(x) == y
|
||
end
|
||
|
||
let m = trainmode(BatchNorm(2)), x = reshape(Float32.(1:24), 2, 2, 3, 2, 1)
|
||
y = reshape(permutedims(x, [4, 1, 2, 3, 5]), 2, :)
|
||
y = permutedims(reshape(m(y), 2, 2, 2, 3, 1), [2, 3, 4, 1, 5])
|
||
@test m(x) == y
|
||
end
|
||
|
||
let m = BatchNorm(32), x = randn(Float32, 416, 416, 32, 1);
|
||
m(x)
|
||
@test (@allocated m(x)) < 100_000_000
|
||
end
|
||
end
|
||
|
||
@testset "InstanceNorm" begin
|
||
# helper functions
|
||
expand_inst = (x, as) -> reshape(repeat(x, outer=[1, as[length(as)]]), as...)
|
||
# begin tests
|
||
let m = InstanceNorm(2), sizes = (3, 2, 2),
|
||
x = reshape(collect(1:prod(sizes)), sizes)
|
||
x = Float64.(x)
|
||
@test m.β == [0, 0] # initβ(2)
|
||
@test m.γ == [1, 1] # initγ(2)
|
||
y = trainmode(m, x)
|
||
|
||
#julia> x
|
||
#[:, :, 1] =
|
||
# 1.0 4.0
|
||
# 2.0 5.0
|
||
# 3.0 6.0
|
||
#
|
||
#[:, :, 2] =
|
||
# 7.0 10.0
|
||
# 8.0 11.0
|
||
# 9.0 12.0
|
||
#
|
||
# μ will be
|
||
# (1. + 2. + 3.) / 3 = 2.
|
||
# (4. + 5. + 6.) / 3 = 5.
|
||
#
|
||
# (7. + 8. + 9.) / 3 = 8.
|
||
# (10. + 11. + 12.) / 3 = 11.
|
||
#
|
||
# ∴ update rule with momentum:
|
||
# (1. - .1) * 0 + .1 * (2. + 8.) / 2 = .5
|
||
# (1. - .1) * 0 + .1 * (5. + 11.) / 2 = .8
|
||
@test m.μ ≈ [0.5, 0.8]
|
||
# momentum * var * num_items / (num_items - 1) + (1 - momentum) * sigma_sq
|
||
# julia> reshape(mean(.1 .* var(x, dims = 1, corrected=false) .* (3 / 2), dims=3), :) .+ .9 .* 1.
|
||
# 2-element Array{Float64,1}:
|
||
# 1.
|
||
# 1.
|
||
@test m.σ² ≈ reshape(mean(.1 .* var(x, dims = 1, corrected=false) .* (3 / 2), dims=3), :) .+ .9 .* 1.
|
||
|
||
x′ = m(x)
|
||
@test isapprox(x′[1], (1 - 0.5) / sqrt(1. + 1f-5), atol = 1.0e-5)
|
||
end
|
||
# with activation function
|
||
let m = InstanceNorm(2, sigmoid), sizes = (3, 2, 2),
|
||
x = reshape(collect(1:prod(sizes)), sizes)
|
||
x = Float64.(x)
|
||
affine_shape = collect(sizes)
|
||
affine_shape[1] = 1
|
||
|
||
y = m(x)
|
||
@test isapprox(y, sigmoid.((x .- expand_inst(m.μ, affine_shape)) ./ sqrt.(expand_inst(m.σ², affine_shape) .+ m.ϵ)), atol = 1.0e-7)
|
||
end
|
||
|
||
let m = trainmode(InstanceNorm(2)), sizes = (2, 4, 1, 2, 3),
|
||
x = Float32.(reshape(collect(1:prod(sizes)), sizes))
|
||
y = reshape(permutedims(x, [3, 1, 2, 4, 5]), :, 2, 3)
|
||
y = reshape(m(y), sizes...)
|
||
@test m(x) == y
|
||
end
|
||
|
||
# check that μ, σ², and the output are the correct size for higher rank tensors
|
||
let m = InstanceNorm(2), sizes = (5, 5, 3, 4, 2, 6),
|
||
x = reshape(Float32.(collect(1:prod(sizes))), sizes)
|
||
y = trainmode(m, x)
|
||
@test size(m.μ) == (sizes[end - 1], )
|
||
@test size(m.σ²) == (sizes[end - 1], )
|
||
@test size(y) == sizes
|
||
end
|
||
|
||
# show that instance norm is equal to batch norm when channel and batch dims are squashed
|
||
let m_inorm = trainmode(InstanceNorm(2)), m_bnorm = trainmode(BatchNorm(12)), sizes = (5, 5, 3, 4, 2, 6),
|
||
x = reshape(Float32.(collect(1:prod(sizes))), sizes)
|
||
@test m_inorm(x) == reshape(m_bnorm(reshape(x, (sizes[1:end - 2]..., :, 1))), sizes)
|
||
end
|
||
|
||
let m = InstanceNorm(32), x = randn(Float32, 416, 416, 32, 1);
|
||
m(x)
|
||
@test (@allocated m(x)) < 100_000_000
|
||
end
|
||
|
||
end
|
||
|
||
@testset "GroupNorm" begin
|
||
# begin tests
|
||
squeeze(x) = dropdims(x, dims = tuple(findall(size(x) .== 1)...)) # To remove all singular dimensions
|
||
|
||
let m = GroupNorm(4,2), sizes = (3,4,2),
|
||
x = reshape(collect(1:prod(sizes)), sizes)
|
||
x = Float64.(x)
|
||
@test m.β == [0, 0, 0, 0] # initβ(32)
|
||
@test m.γ == [1, 1, 1, 1] # initγ(32)
|
||
|
||
y = trainmode(m, x)
|
||
|
||
#julia> x
|
||
#[:, :, 1] =
|
||
# 1.0 4.0 7.0 10.0
|
||
# 2.0 5.0 8.0 11.0
|
||
# 3.0 6.0 9.0 12.0
|
||
#
|
||
#[:, :, 2] =
|
||
# 13.0 16.0 19.0 22.0
|
||
# 14.0 17.0 20.0 23.0
|
||
# 15.0 18.0 21.0 24.0
|
||
#
|
||
# μ will be
|
||
# (1. + 2. + 3. + 4. + 5. + 6.) / 6 = 3.5
|
||
# (7. + 8. + 9. + 10. + 11. + 12.) / 6 = 9.5
|
||
#
|
||
# (13. + 14. + 15. + 16. + 17. + 18.) / 6 = 15.5
|
||
# (19. + 20. + 21. + 22. + 23. + 24.) / 6 = 21.5
|
||
#
|
||
# μ =
|
||
# 3.5 15.5
|
||
# 9.5 21.5
|
||
#
|
||
# ∴ update rule with momentum:
|
||
# (1. - .1) * 0 + .1 * (3.5 + 15.5) / 2 = 0.95
|
||
# (1. - .1) * 0 + .1 * (9.5 + 21.5) / 2 = 1.55
|
||
@test m.μ ≈ [0.95, 1.55]
|
||
|
||
# julia> mean(var(reshape(x,3,2,2,2),dims=(1,2)).* .1,dims=2) .+ .9*1.
|
||
# 2-element Array{Float64,1}:
|
||
# 1.25
|
||
# 1.25
|
||
@test m.σ² ≈ mean(squeeze(var(reshape(x,3,2,2,2),dims=(1,2))).*.1,dims=2) .+ .9*1.
|
||
|
||
x′ = m(x)
|
||
@test isapprox(x′[1], (1 - 0.95) / sqrt(1.25 + 1f-5), atol = 1.0e-5)
|
||
end
|
||
# with activation function
|
||
let m = GroupNorm(4,2, sigmoid), sizes = (3, 4, 2),
|
||
x = reshape(collect(1:prod(sizes)), sizes)
|
||
x = Float64.(x)
|
||
μ_affine_shape = ones(Int,length(sizes) + 1)
|
||
μ_affine_shape[end-1] = 2 # Number of groups
|
||
|
||
affine_shape = ones(Int,length(sizes) + 1)
|
||
affine_shape[end-2] = 2 # Channels per group
|
||
affine_shape[end-1] = 2 # Number of groups
|
||
affine_shape[1] = sizes[1]
|
||
affine_shape[end] = sizes[end]
|
||
|
||
og_shape = size(x)
|
||
|
||
y = m(x)
|
||
x_ = reshape(x,affine_shape...)
|
||
out = reshape(sigmoid.((x_ .- reshape(m.μ,μ_affine_shape...)) ./ sqrt.(reshape(m.σ²,μ_affine_shape...) .+ m.ϵ)),og_shape)
|
||
@test isapprox(y, out, atol = 1.0e-7)
|
||
end
|
||
|
||
let m = trainmode(GroupNorm(2,2)), sizes = (2, 4, 1, 2, 3),
|
||
x = Float32.(reshape(collect(1:prod(sizes)), sizes))
|
||
y = reshape(permutedims(x, [3, 1, 2, 4, 5]), :, 2, 3)
|
||
y = reshape(m(y), sizes...)
|
||
@test m(x) == y
|
||
end
|
||
|
||
# check that μ, σ², and the output are the correct size for higher rank tensors
|
||
let m = GroupNorm(4,2), sizes = (5, 5, 3, 4, 4, 6),
|
||
x = Float32.(reshape(collect(1:prod(sizes)), sizes))
|
||
y = trainmode(m, x)
|
||
@test size(m.μ) == (m.G,1)
|
||
@test size(m.σ²) == (m.G,1)
|
||
@test size(y) == sizes
|
||
end
|
||
|
||
# show that group norm is the same as instance norm when the group size is the same as the number of channels
|
||
let IN = trainmode(InstanceNorm(4)), GN = trainmode(GroupNorm(4,4)), sizes = (2,2,3,4,5),
|
||
x = Float32.(reshape(collect(1:prod(sizes)), sizes))
|
||
@test IN(x) ≈ GN(x)
|
||
end
|
||
|
||
# show that group norm is the same as batch norm for a group of size 1 and batch of size 1
|
||
let BN = trainmode(BatchNorm(4)), GN = trainmode(GroupNorm(4,4)), sizes = (2,2,3,4,1),
|
||
x = Float32.(reshape(collect(1:prod(sizes)), sizes))
|
||
@test BN(x) ≈ GN(x)
|
||
end
|
||
|
||
end
|