59 lines
1.2 KiB
Julia
59 lines
1.2 KiB
Julia
using Flux, Test
|
|
using Flux.CuArrays
|
|
using Flux: gpu
|
|
|
|
@info "Testing GPU Support"
|
|
|
|
@testset "CuArrays" begin
|
|
|
|
CuArrays.allowscalar(false)
|
|
|
|
x = randn(5, 5)
|
|
cx = gpu(x)
|
|
@test cx isa CuArray
|
|
|
|
@test Flux.onecold(gpu([1.0, 2.0, 3.0])) == 3
|
|
|
|
x = Flux.onehotbatch([1, 2, 3], 1:3)
|
|
cx = gpu(x)
|
|
@test cx isa Flux.OneHotMatrix && cx.data isa CuArray
|
|
@test (cx .+ 1) isa CuArray
|
|
|
|
m = Chain(Dense(10, 5, tanh), Dense(5, 2), softmax)
|
|
cm = gpu(m)
|
|
|
|
@test all(p isa CuArray for p in params(cm))
|
|
@test cm(gpu(rand(10, 10))) isa CuArray{Float32,2}
|
|
|
|
x = [1,2,3]
|
|
cx = gpu(x)
|
|
@test Flux.crossentropy(x,x) ≈ Flux.crossentropy(cx,cx)
|
|
|
|
xs = rand(5, 5)
|
|
ys = Flux.onehotbatch(1:5,1:5)
|
|
@test collect(cu(xs) .+ cu(ys)) ≈ collect(xs .+ ys)
|
|
|
|
c = gpu(Conv((2,2),3=>4))
|
|
x = gpu(rand(10, 10, 3, 2))
|
|
l = c(gpu(rand(10,10,3,2)))
|
|
@test gradient(x -> sum(c(x)), x)[1] isa CuArray
|
|
|
|
c = gpu(CrossCor((2,2),3=>4))
|
|
x = gpu(rand(10, 10, 3, 2))
|
|
l = c(gpu(rand(10,10,3,2)))
|
|
@test gradient(x -> sum(c(x)), x)[1] isa CuArray
|
|
|
|
end
|
|
|
|
@testset "onecold gpu" begin
|
|
y = Flux.onehotbatch(ones(3), 1:10) |> gpu;
|
|
@test Flux.onecold(y) isa CuArray
|
|
@test y[3,:] isa CuArray
|
|
end
|
|
|
|
if CuArrays.libcudnn != nothing
|
|
@info "Testing Flux/CUDNN"
|
|
include("cudnn.jl")
|
|
include("curnn.jl")
|
|
end
|