65 lines
2.0 KiB
Julia
65 lines
2.0 KiB
Julia
using Test
|
||
using Flux: onehotbatch, mse, crossentropy, logitcrossentropy,
|
||
σ, binarycrossentropy, logitbinarycrossentropy
|
||
|
||
const ϵ = 1e-7
|
||
|
||
@testset "losses" begin
|
||
# First, regression-style y's
|
||
y = [1, 1, 0, 0]
|
||
ŷ = [.9, .1, .1, .9]
|
||
|
||
@testset "mse" begin
|
||
@test mse(ŷ, y) ≈ (.1^2 + .9^2)/2
|
||
end
|
||
|
||
# Now onehot y's
|
||
y = onehotbatch([1, 1, 0, 0], 0:1)
|
||
ŷ = [.1 .9; .9 .1; .9 .1; .1 .9]'
|
||
v = log(.1 / .9)
|
||
logŷ = [v 0.0; 0.0 v; 0.0 v; v 0.0]'
|
||
lossvalue = 1.203972804325936
|
||
|
||
@testset "crossentropy" begin
|
||
@test crossentropy(ŷ, y) ≈ lossvalue
|
||
end
|
||
|
||
@testset "logitcrossentropy" begin
|
||
@test logitcrossentropy(logŷ, y) ≈ lossvalue
|
||
end
|
||
|
||
@testset "weighted_crossentropy" begin
|
||
@test crossentropy(ŷ, y, weight = ones(2)) ≈ lossvalue
|
||
@test crossentropy(ŷ, y, weight = [.5, .5]) ≈ lossvalue/2
|
||
@test crossentropy(ŷ, y, weight = [2, .5]) ≈ 1.5049660054074199
|
||
end
|
||
|
||
@testset "weighted_logitcrossentropy" begin
|
||
@test logitcrossentropy(logŷ, y, weight = ones(2)) ≈ lossvalue
|
||
@test logitcrossentropy(logŷ, y, weight = [.5, .5]) ≈ lossvalue/2
|
||
@test logitcrossentropy(logŷ, y, weight = [2, .5]) ≈ 1.5049660054074199
|
||
end
|
||
|
||
logŷ, y = randn(3), rand(3)
|
||
@testset "binarycrossentropy" begin
|
||
@test binarycrossentropy.(σ.(logŷ), y; ϵ=0) ≈ -y.*log.(σ.(logŷ)) - (1 .- y).*log.(1 .- σ.(logŷ))
|
||
@test binarycrossentropy.(σ.(logŷ), y) ≈ -y.*log.(σ.(logŷ) .+ eps.(σ.(logŷ))) - (1 .- y).*log.(1 .- σ.(logŷ) .+ eps.(σ.(logŷ)))
|
||
end
|
||
|
||
@testset "logitbinarycrossentropy" begin
|
||
@test logitbinarycrossentropy.(logŷ, y) ≈ binarycrossentropy.(σ.(logŷ), y; ϵ=0)
|
||
end
|
||
|
||
@testset "no spurious promotions" begin
|
||
for T in (Float32, Float64)
|
||
y = rand(T, 2)
|
||
ŷ = rand(T, 2)
|
||
for f in (mse, crossentropy, logitcrossentropy)
|
||
fwd, back = Flux.pullback(f, ŷ, y)
|
||
@test fwd isa T
|
||
@test eltype(back(one(T))[1]) == T
|
||
end
|
||
end
|
||
end
|
||
end
|