Flux.jl/src/layers/normalise.jl
2018-04-17 18:05:58 +01:00

161 lines
4.1 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
testmode!(m)
testmode!(m, false)
Put layers like [`Dropout`](@ref) and [`BatchNorm`](@ref) into testing mode
(or back to training mode with `false`).
"""
function testmode!(m, val::Bool=true)
prefor(x -> _testmode!(x, val), m)
return m
end
_testmode!(m, test) = nothing
"""
Dropout(p)
A Dropout layer. For each input, either sets that input to `0` (with probability
`p`) or scales it by `1/(1-p)`. This is used as a regularisation, i.e. it
reduces overfitting during training.
Does nothing to the input once in [`testmode!`](@ref).
"""
mutable struct Dropout{F}
p::F
active::Bool
end
function Dropout(p)
@assert 0 p 1
Dropout{typeof(p)}(p, true)
end
function (a::Dropout)(x)
a.active || return x
y = similar(x)
rand!(y)
q = 1 - a.p
@inbounds for i=1:length(y)
y[i] = y[i] > a.p ? 1 / q : 0
end
return y .* x
end
_testmode!(a::Dropout, test) = (a.active = !test)
"""
LayerNorm(h::Integer)
A [normalisation layer](https://arxiv.org/pdf/1607.06450.pdf) designed to be
used with recurrent hidden states of size `h`. Normalises the mean/stddev of
each input before applying a per-neuron gain/bias.
"""
struct LayerNorm{T}
diag::Diagonal{T}
end
LayerNorm(h::Integer) =
LayerNorm(Diagonal(h))
treelike(LayerNorm)
(a::LayerNorm)(x) = a.diag(normalise(x))
function Base.show(io::IO, l::LayerNorm)
print(io, "LayerNorm(", length(l.diag.α), ")")
end
"""
BatchNorm(channels::Integer, σ = identity;
initβ = zeros, initγ = ones,
ϵ = 1e-8, momentum = .1)
Batch Normalization layer. The `channels` input should be the size of the
channel dimension in your data (see below).
Given an array with `N` dimensions, call the `N-1`th the channel dimension. (For
a batch of feature vectors this is just the data dimension, for `WHCN` images
it's the usual channel dimension.)
`BatchNorm` computes the mean and variance for each each `W×H×1×N` slice and
shifts them to have a new mean and variance (corresponding to the learnable,
per-channel `bias` and `scale` parameters).
See [Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift](https://arxiv.org/pdf/1502.03167.pdf).
Example:
```julia
m = Chain(
Dense(28^2, 64),
BatchNorm(64, relu),
Dense(64, 10),
BatchNorm(10),
softmax)
```
"""
mutable struct BatchNorm{F,V,W,N}
λ::F # activation function
β::V # bias
γ::V # scale
μ::W # moving mean
σ::W # moving std
ϵ::N
momentum::N
active::Bool
end
BatchNorm(chs::Integer, λ = identity;
initβ = zeros, initγ = ones, ϵ = 1e-8, momentum = .1) =
BatchNorm(λ, param(initβ(chs)), param(initγ(chs)),
zeros(chs), ones(chs), ϵ, momentum, true)
function (BN::BatchNorm)(x)
size(x, ndims(x)-1) == length(BN.β) ||
error("BatchNorm expected $(length(BN.β)) channels, got $(size(x, ndims(x)-1))")
γ, β = BN.γ, BN.β
dims = length(size(x))
channels = size(x, dims-1)
affine_shape = ones(Int, dims)
affine_shape[end-1] = channels
m = prod(size(x)[1:end-2]) * size(x)[end]
if !BN.active
μ = reshape(BN.μ, affine_shape...)
σ = reshape(BN.σ, affine_shape...)
else
T = eltype(x)
ϵ = data(convert(T, BN.ϵ))
axes = [1:dims-2; dims] # axes to reduce along (all but channels axis)
μ = mean(x, axes)
σ = sqrt.(mean((x .- μ).^2, axes) .+ ϵ)
# update moving mean/std
mtm = data(convert(T, BN.momentum))
BN.μ = (1 - mtm) .* BN.μ .+ mtm .* squeeze(data(μ), (axes...))
BN.σ = (1 - mtm) .* BN.σ .+ mtm .* squeeze(data(σ), (axes...)) .* m ./ (m - 1)
end
let λ = BN.λ
λ.(reshape(γ, affine_shape...) .* ((x .- μ) ./ σ) .+ reshape(β, affine_shape...))
end
end
children(BN::BatchNorm) =
(BN.λ, BN.β, BN.γ, BN.μ, BN.σ, BN.ϵ, BN.momentum, BN.active)
mapchildren(f, BN::BatchNorm) = # e.g. mapchildren(cu, BN)
BatchNorm(BN.λ, f(BN.β), f(BN.γ), f(BN.μ), f(BN.σ), BN.ϵ, BN.momentum, BN.active)
_testmode!(BN::BatchNorm, test) = (BN.active = !test)
function Base.show(io::IO, l::BatchNorm)
print(io, "BatchNorm($(join(size(l.β), ", "))")
(l.λ == identity) || print(io, ", λ = $(l.λ)")
print(io, ")")
end