Flux.jl/src/tracker/back.jl
2019-02-28 14:58:42 +00:00

191 lines
4.1 KiB
Julia

# The AD generates fairly large backtraces that are unhelpful if you interrupt
# while training; this just cleans that up.
macro interrupts(ex)
:(try $(esc(ex))
catch e
e isa InterruptException || rethrow()
throw(e)
end)
end
# In-place gradients
init_grad(x) = zero(x)
zero_grad!(x) = zero(x)
zero_grad!(x::AbstractArray) = (x .= 0)
scan(c::Call) = foreach(scan, c.args)
function scan(x::Tracked)
x.isleaf && return
ref = x.ref += 1
if ref == 1
scan(x.f)
isdefined(x, :grad) && (x.grad = zero_grad!(x.grad))
end
return
end
function scan(x)
istracked(x) && scan(tracker(x))
return
end
function back_(c::Call, Δ, once)
Δs = c.func(Δ)
(Δs isa Tuple && length(Δs) >= length(c.args)) ||
error("Gradient is not a tuple of length $(length(c.args))")
foreach((x, d) -> back(x, d, once), c.args, data.(Δs))
end
back_(::Call{Nothing}, Δ, once) = nothing
back_(::Call{Missing}, Δ, once) = error("`back!` was already used")
accum!(x, Δ) = x .+ Δ
accum!(x::AbstractArray, Δ) = (x .+= Δ)
function back(x::Tracked, Δ, once)
x.isleaf && (x.grad = accum!(x.grad, Δ); return)
ref = x.ref -= 1
grad = if isdefined(x, :grad)
x.grad = accum!(x.grad, Δ)
elseif ref > 0
x.grad = Δ
else
Δ
end
if ref == 0
back_(x.f, grad, once)
once && !x.isleaf && (x.f = Call(missing, ()))
end
return
end
back(::Nothing, Δ, once) = return
# Interface methods
# TODO: if an error occurs in `back` the refcounts will be broken
# and `back` will silently fail to update.
# (but only if you re-use intermediate values between passes)
# Refcounts are also probably not safe in some situations (e.g. back called
# from within a backpropagator)
function back!(x, Δ; once = true)
istracked(x) || return
scan(x)
back(tracker(x), Δ, once)
return
end
function extract_grad!(x)
= copy(grad(x))
= nobacksies("Use `gradient(...; nest = true)` for nested derivatives", )
tracker(x).grad = zero_grad!(grad(x))
return
end
function gradient_(f, xs...)
xs = param.(data.(xs))
l = f(xs...)
losscheck(l)
@interrupts back!(l)
extract_grad!.(xs)
end
function gradient_(f, xs::Params)
l = f()
losscheck(l)
@interrupts back!(l)
gs = Grads()
for x in xs
gs[tracker(x)] = extract_grad!(x)
end
return gs
end
# Out-of-place gradients
function back_(g::Grads, c::Call, Δ)
Δs = c.func(Δ)
(Δs isa Tuple && length(Δs) >= length(c.args)) ||
error("Gradient is not a tuple of length $(length(c.args))")
foreach((x, Δ) -> back(g, x, Δ), c.args, Δs)
end
back_(g::Grads, ::Call{Nothing}, Δ) = nothing
function back(g::Grads, x::Tracked, Δ)
x.isleaf && (accum!(g, x, Δ); return)
ref = x.ref -= 1
if ref > 0 || haskey(g, x)
accum!(g, x, Δ)
ref == 0 && back_(g, x.f, g[x])
else
ref == 0 && back_(g, x.f, Δ)
end
return
end
back(::Grads, ::Nothing, _) = return
collectmemaybe(xs) = xs
function forward(f, ps::Params)
y = collectmemaybe(f())
y, function (Δ)
g = Grads(ps)
if istracked(y)
scan(y)
back(g, tracker(y), Δ)
end
return g
end
end
function forward(f, args...)
args = param.(args)
y, back = forward(() -> f(args...), Params(args))
y, Δ -> getindex.(Ref(back(Δ)), args)
end
function losscheck(x)
x isa Real || error("Function output is not scalar")
isinf(x) && error("Loss is infinite")
isnan(x) && error("Loss is NaN")
end
function gradient_nested(f, args...)
y, back = forward(f, args...)
losscheck(y)
return back(1)
end
gradient(f, xs...; nest = false) =
nest ? gradient_nested(f, xs...) : gradient_(f, xs...)
# Jacobians and Hessians
import ..Flux
"""
J = jacobian(m,x)
Calculate the output jacobian `J = d/dx m(x)` such that each row `i` of `J` corresponds to the gradient `J[i,:] = ∇ₓ(m(x)[i])`
"""
function jacobian(m,x)
xp = param(x)
y = m(xp)
k = length(y)
n = length(x)
J = Matrix{eltype(x)}(undef,k,n)
for i = 1:k
Flux.back!(y[i], once = false) # Populate gradient accumulator
J[i,:] = xp.grad
xp.grad .= 0 # Reset gradient accumulator
end
J
end
hessian(f, x) = jacobian(x -> gradient(f, x, nest=true)[1], x)