Flux.jl/v0.3.4/models/basics.html
2017-11-01 14:38:38 +00:00

80 lines
8.4 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><head><meta charset="UTF-8"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><title>Basics · Flux</title><script>(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-36890222-9', 'auto');
ga('send', 'pageview');
</script><link href="https://cdnjs.cloudflare.com/ajax/libs/normalize/4.2.0/normalize.min.css" rel="stylesheet" type="text/css"/><link href="https://fonts.googleapis.com/css?family=Lato|Roboto+Mono" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/default.min.css" rel="stylesheet" type="text/css"/><script>documenterBaseURL=".."</script><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.2.0/require.min.js" data-main="../assets/documenter.js"></script><script src="../siteinfo.js"></script><script src="../../versions.js"></script><link href="../assets/documenter.css" rel="stylesheet" type="text/css"/><link href="../../flux.css" rel="stylesheet" type="text/css"/></head><body><nav class="toc"><h1>Flux</h1><select id="version-selector" onChange="window.location.href=this.value" style="visibility: hidden"></select><form class="search" id="search-form" action="../search.html"><input id="search-query" name="q" type="text" placeholder="Search docs"/></form><ul><li><a class="toctext" href="../index.html">Home</a></li><li><span class="toctext">Building Models</span><ul><li class="current"><a class="toctext" href="basics.html">Basics</a><ul class="internal"><li><a class="toctext" href="#Taking-Gradients-1">Taking Gradients</a></li><li><a class="toctext" href="#Building-Layers-1">Building Layers</a></li><li><a class="toctext" href="#Stacking-It-Up-1">Stacking It Up</a></li></ul></li><li><a class="toctext" href="recurrence.html">Recurrence</a></li><li><a class="toctext" href="layers.html">Model Reference</a></li></ul></li><li><span class="toctext">Training Models</span><ul><li><a class="toctext" href="../training/optimisers.html">Optimisers</a></li><li><a class="toctext" href="../training/training.html">Training</a></li></ul></li><li><a class="toctext" href="../data/onehot.html">One-Hot Encoding</a></li><li><a class="toctext" href="../gpu.html">GPU Support</a></li><li><a class="toctext" href="../community.html">Community</a></li></ul></nav><article id="docs"><header><nav><ul><li>Building Models</li><li><a href="basics.html">Basics</a></li></ul><a class="edit-page" href="https://github.com/FluxML/Flux.jl/blob/master/docs/src/models/basics.md"><span class="fa"></span> Edit on GitHub</a></nav><hr/><div id="topbar"><span>Basics</span><a class="fa fa-bars" href="#"></a></div></header><h1><a class="nav-anchor" id="Model-Building-Basics-1" href="#Model-Building-Basics-1">Model-Building Basics</a></h1><h2><a class="nav-anchor" id="Taking-Gradients-1" href="#Taking-Gradients-1">Taking Gradients</a></h2><p>Consider a simple linear regression, which tries to predict an output array <code>y</code> from an input <code>x</code>. (It&#39;s a good idea to follow this example in the Julia repl.)</p><pre><code class="language-julia">W = rand(2, 5)
b = rand(2)
predict(x) = W*x .+ b
loss(x, y) = sum((predict(x) .- y).^2)
x, y = rand(5), rand(2) # Dummy data
loss(x, y) # ~ 3</code></pre><p>To improve the prediction we can take the gradients of <code>W</code> and <code>b</code> with respect to the loss function and perform gradient descent. We could calculate gradients by hand, but Flux will do it for us if we tell it that <code>W</code> and <code>b</code> are trainable <em>parameters</em>.</p><pre><code class="language-julia">using Flux.Tracker
W = param(W)
b = param(b)
l = loss(x, y)
back!(l)</code></pre><p><code>loss(x, y)</code> returns the same number, but it&#39;s now a <em>tracked</em> value that records gradients as it goes along. Calling <code>back!</code> then calculates the gradient of <code>W</code> and <code>b</code>. We can see what this gradient is, and modify <code>W</code> to train the model.</p><pre><code class="language-julia">W.grad
# Update the parameter
W.data .-= 0.1(W.grad)
loss(x, y) # ~ 2.5</code></pre><p>The loss has decreased a little, meaning that our prediction <code>x</code> is closer to the target <code>y</code>. If we have some data we can already try <a href="../training/training.html">training the model</a>.</p><p>All deep learning in Flux, however complex, is a simple generalisation of this example. Of course, models can <em>look</em> very different they might have millions of parameters or complex control flow, and there are ways to manage this complexity. Let&#39;s see what that looks like.</p><h2><a class="nav-anchor" id="Building-Layers-1" href="#Building-Layers-1">Building Layers</a></h2><p>It&#39;s common to create more complex models than the linear regression above. For example, we might want to have two linear layers with a nonlinearity like <a href="https://en.wikipedia.org/wiki/Sigmoid_function">sigmoid</a> (<code>σ</code>) in between them. In the above style we could write this as:</p><pre><code class="language-julia">W1 = param(rand(3, 5))
b1 = param(rand(3))
layer1(x) = W1 * x .+ b1
W2 = param(rand(2, 3))
b2 = param(rand(2))
layer2(x) = W2 * x .+ b2
model(x) = layer2(σ.(layer1(x)))
model(rand(5)) # =&gt; 2-element vector</code></pre><p>This works but is fairly unwieldy, with a lot of repetition especially as we add more layers. One way to factor this out is to create a function that returns linear layers.</p><pre><code class="language-julia">function linear(in, out)
W = param(randn(out, in))
b = param(randn(out))
x -&gt; W * x .+ b
end
linear1 = linear(5, 3) # we can access linear1.W etc
linear2 = linear(3, 2)
model(x) = linear2(σ.(linear1(x)))
model(x) # =&gt; 2-element vector</code></pre><p>Another (equivalent) way is to create a struct that explicitly represents the affine layer.</p><pre><code class="language-julia">struct Affine
W
b
end
Affine(in::Integer, out::Integer) =
Affine(param(randn(out, in)), param(randn(out)))
# Overload call, so the object can be used as a function
(m::Affine)(x) = m.W * x .+ m.b
a = Affine(10, 5)
a(rand(10)) # =&gt; 5-element vector</code></pre><p>Congratulations! You just built the <code>Dense</code> layer that comes with Flux. Flux has many interesting layers available, but they&#39;re all things you could have built yourself very easily.</p><p>(There is one small difference with <code>Dense</code> for convenience it also takes an activation function, like <code>Dense(10, 5, σ)</code>.)</p><h2><a class="nav-anchor" id="Stacking-It-Up-1" href="#Stacking-It-Up-1">Stacking It Up</a></h2><p>It&#39;s pretty common to write models that look something like:</p><pre><code class="language-julia">layer1 = Dense(10, 5, σ)
# ...
model(x) = layer3(layer2(layer1(x)))</code></pre><p>For long chains, it might be a bit more intuitive to have a list of layers, like this:</p><pre><code class="language-julia">using Flux
layers = [Dense(10, 5, σ), Dense(5, 2), softmax]
model(x) = foldl((x, m) -&gt; m(x), x, layers)
model(rand(10)) # =&gt; 2-element vector</code></pre><p>Handily, this is also provided for in Flux:</p><pre><code class="language-julia">model2 = Chain(
Dense(10, 5, σ),
Dense(5, 2),
softmax)
model2(rand(10)) # =&gt; 2-element vector</code></pre><p>This quickly starts to look like a high-level deep learning library; yet you can see how it falls out of simple abstractions, and we lose none of the power of Julia code.</p><p>A nice property of this approach is that because &quot;models&quot; are just functions (possibly with trainable parameters), you can also see this as simple function composition.</p><pre><code class="language-julia">m = Dense(5, 2) ∘ Dense(10, 5, σ)
m(rand(10))</code></pre><p>Likewise, <code>Chain</code> will happily work with any Julia function.</p><pre><code class="language-julia">m = Chain(x -&gt; x^2, x -&gt; x+1)
m(5) # =&gt; 26</code></pre><footer><hr/><a class="previous" href="../index.html"><span class="direction">Previous</span><span class="title">Home</span></a><a class="next" href="recurrence.html"><span class="direction">Next</span><span class="title">Recurrence</span></a></footer></article></body></html>