Flux.jl/src/compiler/loops.jl
2017-06-05 22:49:31 +01:00

188 lines
4.4 KiB
Julia

# Stateful Models
mutable struct Stateful
model
states::Vector{Any}
istate::Vector{Any}
ostate::Vector{Any}
end
Stateful(model, ss) = Stateful(model, ss, state.(ss), state.(ss))
function (m::Stateful)(x)
m.istate = m.ostate
state, y = m.model((m.istate...,), x)
m.ostate = collect(state)
return y
end
function back!(m::Stateful, Δ, x)
back!(m.model, ((zeros.(m.ostate)...,), Δ), (m.istate...,), x)[2:end]
end
update!(m::Stateful, η) = update!(m.model, η)
# Seq Models
struct SeqModel
model
steps::Int
end
runseq(f, xs::Tuple...) = f(xs...)
runseq(f, xs::AbstractArray...) = stack(f(map(x -> (unstack(x,2)...,), xs)...), 2)
runseq(f, xs::Batch{<:Seq}...) = convert(Batch{Seq}, runseq(f, rawbatch.(xs)...))
runseq(f, xs) = runseq(f, (xs...,))
function (m::SeqModel)(x)
runseq(x) do x
@assert length(x) == m.steps "Expected seq length $(m.steps), got $(size(x, 2))"
m.model(x)
end
end
back!(m::SeqModel, Δ, x) = (runseq((Δ, x) -> back!(m.model, Δ, x)[1], Δ, x),)
update!(m::SeqModel, η) = update!(m.model, η)
graph(m::SeqModel) = graph(m.model)
# Recurrent Graphs
struct Offset
name::Symbol
n::Int
default::Nullable{Any}
end
Offset(name, n) = Offset(name, n, nothing)
Base.:-(o::Offset) = Offset(o.name, -o.n, o.default)
function liftloops(ex)
ex = DataFlow.normedges(ex)
decls = Dict()
ex = MacroTools.postwalk(ex) do ex
@capture(ex, x_{n_}) || return ex
haskey(decls, (x,n)) && return namify(decls[(x,n)])
@gensym edge
decls[(x,n)] = :($edge = $(Offset(x,n))($x))
edge
end
prepend!(ex.args, collect(values(decls)))
ex
end
function hasloops(model)
g = graph(model)
g == nothing && return false
iscyclic(g) && return true
result = false
map(m -> hasloops(m) && (result = true), g)
return result
end
function atomise(model)
postwalk(graph(model)) do v
hasloops(value(v)) || return v
spliceinputs(atomise(value(v)), inputs(v)...)
end
end
function collect_state(v::IVertex)
state = typeof(v)[]
offset = Int[]
default = Param[]
prewalk!(v) do v
value(v) isa Offset || return v
if (i = findfirst(state, v[1])) == 0
push!(state, v[1])
push!(offset, max(0, -value(v).n))
push!(default, get(value(v).default))
else
offset[i] = max(offset[i], -value(v).n)
end
v
end
return state, offset, default
end
hiddeninput(n) = vertex(Split(n), inputnode(1))
create_steps(v::IVertex, n) = [bumpinputs(spliceinputs(v, hiddeninput(i))) for i = 1:n]
function getvar(n, step, steps, offset, default)
if step < 1
hiddeninput(sum(offset[1:n-1]) + 1 - step)
elseif step 1:length(steps)
constant(default[n])
else
steps[step][1,n]
end
end
function stateout(steps, offset, default)
outs = []
defaults = []
for i = 1:length(offset), j = 1:offset[i]
push!(outs, getvar(i, length(steps)-j+1, steps, offset, default))
push!(defaults, default[i])
end
group(outs...), defaults
end
# Input: (hidden1, hidden2, ...), (x1, x2, ...)
# Output: (hidden1, hidden2, ...), (y1, y2, ...)
# TODO: make sure there's a reasonable order for hidden states
function unrollgraph(v::IVertex, n)
state, offset, default = collect_state(v)
v = group(group(state...), v)
steps = create_steps(v, n)
for i = 1:n
vars = inputs(steps[i][1])
postwalk!(steps[i]) do v
value(v) isa Offset || return v
varid = findfirst(vars,v[1])
getvar(varid, value(v).n + i, steps, offset, default)
end
end
out = group(map(x->x[2], steps)...)
state, defaults = stateout(steps, offset, default)
group(state,out), defaults
end
unrollgraph(m, n; kws...) = unrollgraph(atomise(m), n; kws...)
function unroll(model, n)
graph, state = unrollgraph(model, n)
SeqModel(Stateful(Capacitor(graph), state), n)
end
function stateless(s::Stateful)
v = graph(s.model)
v = spliceinputs(v, group(constant.(s.states)...),
[inputnode(i) for i = 1:graphinputs(v)-1]...)
Capacitor(v[2])
end
stateless(s::SeqModel) = SeqModel(stateless(s.model), s.steps)
function unseqin(v::IVertex)
prewalk(v) do v
# TODO: inputidx function
isa(value(v), Split) && DataFlow.isinput(v[1]) && value(v[1]).n == 2 ? v[1] : v
end
end
unseqout(v::IVertex) = group(v[1], v[2][1])
unseq(graph) = unseqout(unseqin(graph))
function unroll1(model)
graph, state = unrollgraph(model, 1)
Stateful(Capacitor(unseq(graph)), state)
end
flip(model) = Capacitor(map(x -> x isa Offset ? -x : x, atomise(model)))