188 lines
4.4 KiB
Julia
188 lines
4.4 KiB
Julia
# Stateful Models
|
|
|
|
mutable struct Stateful
|
|
model
|
|
states::Vector{Any}
|
|
istate::Vector{Any}
|
|
ostate::Vector{Any}
|
|
end
|
|
|
|
Stateful(model, ss) = Stateful(model, ss, state.(ss), state.(ss))
|
|
|
|
function (m::Stateful)(x)
|
|
m.istate = m.ostate
|
|
state, y = m.model((m.istate...,), x)
|
|
m.ostate = collect(state)
|
|
return y
|
|
end
|
|
|
|
function back!(m::Stateful, Δ, x)
|
|
back!(m.model, ((zeros.(m.ostate)...,), Δ), (m.istate...,), x)[2:end]
|
|
end
|
|
|
|
update!(m::Stateful, η) = update!(m.model, η)
|
|
|
|
# Seq Models
|
|
|
|
struct SeqModel
|
|
model
|
|
steps::Int
|
|
end
|
|
|
|
runseq(f, xs::Tuple...) = f(xs...)
|
|
runseq(f, xs::AbstractArray...) = stack(f(map(x -> (unstack(x,2)...,), xs)...), 2)
|
|
runseq(f, xs::Batch{<:Seq}...) = convert(Batch{Seq}, runseq(f, rawbatch.(xs)...))
|
|
runseq(f, xs) = runseq(f, (xs...,))
|
|
|
|
function (m::SeqModel)(x)
|
|
runseq(x) do x
|
|
@assert length(x) == m.steps "Expected seq length $(m.steps), got $(size(x, 2))"
|
|
m.model(x)
|
|
end
|
|
end
|
|
|
|
back!(m::SeqModel, Δ, x) = (runseq((Δ, x) -> back!(m.model, Δ, x)[1], Δ, x),)
|
|
|
|
update!(m::SeqModel, η) = update!(m.model, η)
|
|
|
|
graph(m::SeqModel) = graph(m.model)
|
|
|
|
# Recurrent Graphs
|
|
|
|
struct Offset
|
|
name::Symbol
|
|
n::Int
|
|
default::Nullable{Any}
|
|
end
|
|
|
|
Offset(name, n) = Offset(name, n, nothing)
|
|
|
|
Base.:-(o::Offset) = Offset(o.name, -o.n, o.default)
|
|
|
|
function liftloops(ex)
|
|
ex = DataFlow.normedges(ex)
|
|
decls = Dict()
|
|
ex = MacroTools.postwalk(ex) do ex
|
|
@capture(ex, x_{n_}) || return ex
|
|
haskey(decls, (x,n)) && return namify(decls[(x,n)])
|
|
@gensym edge
|
|
decls[(x,n)] = :($edge = $(Offset(x,n))($x))
|
|
edge
|
|
end
|
|
prepend!(ex.args, collect(values(decls)))
|
|
ex
|
|
end
|
|
|
|
function hasloops(model)
|
|
g = graph(model)
|
|
g == nothing && return false
|
|
iscyclic(g) && return true
|
|
result = false
|
|
map(m -> hasloops(m) && (result = true), g)
|
|
return result
|
|
end
|
|
|
|
function atomise(model)
|
|
postwalk(graph(model)) do v
|
|
hasloops(value(v)) || return v
|
|
spliceinputs(atomise(value(v)), inputs(v)...)
|
|
end
|
|
end
|
|
|
|
function collect_state(v::IVertex)
|
|
state = typeof(v)[]
|
|
offset = Int[]
|
|
default = Param[]
|
|
prewalk!(v) do v
|
|
value(v) isa Offset || return v
|
|
if (i = findfirst(state, v[1])) == 0
|
|
push!(state, v[1])
|
|
push!(offset, max(0, -value(v).n))
|
|
push!(default, get(value(v).default))
|
|
else
|
|
offset[i] = max(offset[i], -value(v).n)
|
|
end
|
|
v
|
|
end
|
|
return state, offset, default
|
|
end
|
|
|
|
hiddeninput(n) = vertex(Split(n), inputnode(1))
|
|
|
|
create_steps(v::IVertex, n) = [bumpinputs(spliceinputs(v, hiddeninput(i))) for i = 1:n]
|
|
|
|
function getvar(n, step, steps, offset, default)
|
|
if step < 1
|
|
hiddeninput(sum(offset[1:n-1]) + 1 - step)
|
|
elseif step ∉ 1:length(steps)
|
|
constant(default[n])
|
|
else
|
|
steps[step][1,n]
|
|
end
|
|
end
|
|
|
|
function stateout(steps, offset, default)
|
|
outs = []
|
|
defaults = []
|
|
for i = 1:length(offset), j = 1:offset[i]
|
|
push!(outs, getvar(i, length(steps)-j+1, steps, offset, default))
|
|
push!(defaults, default[i])
|
|
end
|
|
group(outs...), defaults
|
|
end
|
|
|
|
# Input: (hidden1, hidden2, ...), (x1, x2, ...)
|
|
# Output: (hidden1, hidden2, ...), (y1, y2, ...)
|
|
# TODO: make sure there's a reasonable order for hidden states
|
|
|
|
function unrollgraph(v::IVertex, n)
|
|
state, offset, default = collect_state(v)
|
|
v = group(group(state...), v)
|
|
steps = create_steps(v, n)
|
|
for i = 1:n
|
|
vars = inputs(steps[i][1])
|
|
postwalk!(steps[i]) do v
|
|
value(v) isa Offset || return v
|
|
varid = findfirst(vars,v[1])
|
|
getvar(varid, value(v).n + i, steps, offset, default)
|
|
end
|
|
end
|
|
out = group(map(x->x[2], steps)...)
|
|
state, defaults = stateout(steps, offset, default)
|
|
group(state,out), defaults
|
|
end
|
|
|
|
unrollgraph(m, n; kws...) = unrollgraph(atomise(m), n; kws...)
|
|
|
|
function unroll(model, n)
|
|
graph, state = unrollgraph(model, n)
|
|
SeqModel(Stateful(Capacitor(graph), state), n)
|
|
end
|
|
|
|
function stateless(s::Stateful)
|
|
v = graph(s.model)
|
|
v = spliceinputs(v, group(constant.(s.states)...),
|
|
[inputnode(i) for i = 1:graphinputs(v)-1]...)
|
|
Capacitor(v[2])
|
|
end
|
|
|
|
stateless(s::SeqModel) = SeqModel(stateless(s.model), s.steps)
|
|
|
|
function unseqin(v::IVertex)
|
|
prewalk(v) do v
|
|
# TODO: inputidx function
|
|
isa(value(v), Split) && DataFlow.isinput(v[1]) && value(v[1]).n == 2 ? v[1] : v
|
|
end
|
|
end
|
|
|
|
unseqout(v::IVertex) = group(v[1], v[2][1])
|
|
|
|
unseq(graph) = unseqout(unseqin(graph))
|
|
|
|
function unroll1(model)
|
|
graph, state = unrollgraph(model, 1)
|
|
Stateful(Capacitor(unseq(graph)), state)
|
|
end
|
|
|
|
flip(model) = Capacitor(map(x -> x isa Offset ? -x : x, atomise(model)))
|