Flux.jl/v0.3.0/models/recurrence.html
2017-09-11 13:28:47 +00:00

44 lines
8.6 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<html lang="en"><head><meta charset="UTF-8"/><meta name="viewport" content="width=device-width, initial-scale=1.0"/><title>Recurrence · Flux</title><script>(function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){
(i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o),
m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m)
})(window,document,'script','https://www.google-analytics.com/analytics.js','ga');
ga('create', 'UA-36890222-9', 'auto');
ga('send', 'pageview');
</script><link href="https://cdnjs.cloudflare.com/ajax/libs/normalize/4.2.0/normalize.min.css" rel="stylesheet" type="text/css"/><link href="https://fonts.googleapis.com/css?family=Lato|Roboto+Mono" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/4.6.3/css/font-awesome.min.css" rel="stylesheet" type="text/css"/><link href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.12.0/styles/default.min.css" rel="stylesheet" type="text/css"/><script>documenterBaseURL=".."</script><script src="https://cdnjs.cloudflare.com/ajax/libs/require.js/2.2.0/require.min.js" data-main="../assets/documenter.js"></script><script src="../siteinfo.js"></script><script src="../../versions.js"></script><link href="../assets/documenter.css" rel="stylesheet" type="text/css"/><link href="../../flux.css" rel="stylesheet" type="text/css"/></head><body><nav class="toc"><h1>Flux</h1><select id="version-selector" onChange="window.location.href=this.value" style="visibility: hidden"></select><form class="search" action="../search.html"><input id="search-query" name="q" type="text" placeholder="Search docs"/></form><ul><li><a class="toctext" href="../index.html">Home</a></li><li><span class="toctext">Building Models</span><ul><li><a class="toctext" href="basics.html">Basics</a></li><li class="current"><a class="toctext" href="recurrence.html">Recurrence</a><ul class="internal"><li><a class="toctext" href="#Recurrent-Cells-1">Recurrent Cells</a></li><li><a class="toctext" href="#Stateful-Models-1">Stateful Models</a></li><li><a class="toctext" href="#Sequences-1">Sequences</a></li><li><a class="toctext" href="#Truncating-Gradients-1">Truncating Gradients</a></li></ul></li><li><a class="toctext" href="layers.html">Layer Reference</a></li></ul></li><li><span class="toctext">Training Models</span><ul><li><a class="toctext" href="../training/optimisers.html">Optimisers</a></li><li><a class="toctext" href="../training/training.html">Training</a></li></ul></li><li><span class="toctext">Data Munging</span><ul><li><a class="toctext" href="../data/onehot.html">One-Hot Encoding</a></li></ul></li><li><a class="toctext" href="../contributing.html">Contributing &amp; Help</a></li></ul></nav><article id="docs"><header><nav><ul><li>Building Models</li><li><a href="recurrence.html">Recurrence</a></li></ul><a class="edit-page" href="https://github.com/FluxML/Flux.jl/tree/5f24d61ba3abff93cbd42d871d24b6d6f48ce7ae/docs/src/models/recurrence.md"><span class="fa"></span> Edit on GitHub</a></nav><hr/><div id="topbar"><span>Recurrence</span><a class="fa fa-bars" href="#"></a></div></header><h1><a class="nav-anchor" id="Recurrent-Models-1" href="#Recurrent-Models-1">Recurrent Models</a></h1><h2><a class="nav-anchor" id="Recurrent-Cells-1" href="#Recurrent-Cells-1">Recurrent Cells</a></h2><p>In the simple feedforward case, our model <code>m</code> is a simple function from various inputs <code>xᵢ</code> to predictions <code>yᵢ</code>. (For example, each <code>x</code> might be an MNIST digit and each <code>y</code> a digit label.) Each prediction is completely independent of any others, and using the same <code>x</code> will always produce the same <code>y</code>.</p><pre><code class="language-julia">y₁ = f(x₁)
y₂ = f(x₂)
y₃ = f(x₃)
# ...</code></pre><p>Recurrent networks introduce a <em>hidden state</em> that gets carried over each time we run the model. The model now takes the old <code>h</code> as an input, and produces a new <code>h</code> as output, each time we run it.</p><pre><code class="language-julia">h = # ... initial state ...
y₁, h = f(x₁, h)
y₂, h = f(x₂, h)
y₃, h = f(x₃, h)
# ...</code></pre><p>Information stored in <code>h</code> is preserved for the next prediction, allowing it to function as a kind of memory. This also means that the prediction made for a given <code>x</code> depends on all the inputs previously fed into the model.</p><p>(This might be important if, for example, each <code>x</code> represents one word of a sentence; the model&#39;s interpretation of the word &quot;bank&quot; should change if the previous input was &quot;river&quot; rather than &quot;investment&quot;.)</p><p>Flux&#39;s RNN support closely follows this mathematical perspective. The most basic RNN is as close as possible to a standard <code>Dense</code> layer, and the output and hidden state are the same. By convention, the hidden state is the first input and output.</p><pre><code class="language-julia">Wxh = randn(5, 10)
Whh = randn(5, 5)
b = randn(5)
function rnn(h, x)
h = tanh.(Wxh * x .+ Whh * h .+ b)
return h, h
end
x = rand(10) # dummy data
h = rand(5) # initial hidden state
h, y = rnn(h, x)</code></pre><p>If you run the last line a few times, you&#39;ll notice the output <code>y</code> changing slightly even though the input <code>x</code> is the same.</p><p>We sometimes refer to functions like <code>rnn</code> above, which explicitly manage state, as recurrent <em>cells</em>. There are various recurrent cells available, which are documented in the <a href="models/layers.html">layer reference</a>. The hand-written example above can be replaced with:</p><pre><code class="language-julia">using Flux
m = Flux.RNNCell(10, 5)
x = rand(10) # dummy data
h = rand(5) # initial hidden state
h, y = rnn(h, x)</code></pre><h2><a class="nav-anchor" id="Stateful-Models-1" href="#Stateful-Models-1">Stateful Models</a></h2><p>For the most part, we don&#39;t want to manage hidden states ourselves, but to treat our models as being stateful. Flux provides the <code>Recur</code> wrapper to do this.</p><pre><code class="language-julia">x = rand(10)
h = rand(5)
m = Flux.Recur(rnn, h)
y = m(x)</code></pre><p>The <code>Recur</code> wrapper stores the state between runs in the <code>m.state</code> field.</p><p>If you use the <code>RNN(10, 5)</code> constructor as opposed to <code>RNNCell</code> you&#39;ll see that it&#39;s simply a wrapped cell.</p><pre><code class="language-julia">julia&gt; RNN(10, 5)
Recur(RNNCell(Dense(15, 5)))</code></pre><h2><a class="nav-anchor" id="Sequences-1" href="#Sequences-1">Sequences</a></h2><p>Often we want to work with sequences of inputs, rather than individual <code>x</code>s.</p><pre><code class="language-julia">seq = [rand(10) for i = 1:10]</code></pre><p>With <code>Recur</code>, applying our model to each element of a sequence is trivial:</p><pre><code class="language-julia">map(m, seq) # returns a list of 5-element vectors</code></pre><p>To make this a bit more convenient, Flux has the <code>Seq</code> type. This is just a list, but tagged so that we know it&#39;s meant to be used as a sequence of data points.</p><pre><code class="language-julia">seq = Seq([rand(10) for i = 1:10])
m(seq) # returns a new Seq of length 10</code></pre><p>When we apply the model <code>m</code> to a seq, it gets mapped over every item in the sequence in order. This is just like the code above, but often more convenient.</p><p>You can get this behaviour more generally with the <code>Over</code> wrapper.</p><pre><code class="language-julia">m = Over(Dense(10,5))
m(seq) # returns a new Seq of length 10</code></pre><h2><a class="nav-anchor" id="Truncating-Gradients-1" href="#Truncating-Gradients-1">Truncating Gradients</a></h2><p>By default, calculating the gradients in a recurrent layer involves the entire history. For example, if we call the model on 100 inputs, calling <code>back!</code> will calculate the gradient for those 100 calls. If we then calculate another 10 inputs we have to calculate 110 gradients this accumulates and quickly becomes expensive.</p><p>To avoid this we can <em>truncate</em> the gradient calculation, forgetting the history.</p><pre><code class="language-julia">truncate!(m)</code></pre><p>Calling <code>truncate!</code> wipes the slate clean, so we can call the model with more inputs without building up an expensive gradient computation.</p><footer><hr/><a class="previous" href="basics.html"><span class="direction">Previous</span><span class="title">Basics</span></a><a class="next" href="layers.html"><span class="direction">Next</span><span class="title">Layer Reference</span></a></footer></article></body></html>