Relax! Flux is the ML library that doesn't make you tensor
Go to file
Mike J Innes d4bc56e687 tweak intro 2017-09-07 03:09:58 -04:00
docs model section 2017-09-07 01:49:46 -04:00
src handle epoch elsewhere 2017-09-07 00:29:55 -04:00
test efficient traversal 2017-09-06 23:09:32 -04:00
.gitignore ignore demos 2017-03-14 15:27:53 +00:00
.travis.yml use documenter release 2017-09-07 01:15:21 -04:00
LICENSE.md Flux.jl generated files. 2016-03-22 19:58:58 +00:00
README.md tweak intro 2017-09-07 03:09:58 -04:00
REQUIRE update dataflow bounds 2017-09-07 01:21:41 -04:00

README.md

Флукс

Build Status Join the chat at https://gitter.im/FluxML Slack

Flux is a refreshing approach to machine learning. It provides lightweight abstractions on top of Julia's native GPU and AD support, while remaining fully hackable (right down to the GPU kernels).

Define a simple model using any Julia code:

using Flux.Tracker
x, y = rand(10), rand(5) # Dummy input / output
# `track` defines parameters that we can train
W, b = track(randn(5,10)), track(randn(5))
# Transform `x` and calculate the mean squared error
loss = Flux.mse(W*x .+ b, y)
# Calculate and store gradients of `track`ed parameters
back!(loss)
Tracker.grad(W) # Get the gradient of `W` wrt the loss

Define a larger model using high-level abstractions:

using Flux

m = Chain(
  Dense(10, 32, relu),
  Dense(32, 10), softmax)

m(rand(10))

Mix and match the two:

using Flux.Tracker
x, y = rand(10), rand(5)
d = Dense(10, 5)
loss = Flux.mse(d(x), y)

See the documentation or the model zoo for more examples.