Flux.jl/test/cuda/cuda.jl
2019-05-14 02:52:28 -07:00

58 lines
1.3 KiB
Julia

using Flux, Flux.Tracker, CuArrays, Test
using Flux: gpu
@info "Testing GPU Support"
@testset "CuArrays" begin
CuArrays.allowscalar(false)
x = param(randn(5, 5))
cx = gpu(x)
@test cx isa TrackedArray && cx.data isa CuArray
@test Flux.onecold(param(gpu([1.,2.,3.]))) == 3
x = Flux.onehotbatch([1, 2, 3], 1:3)
cx = gpu(x)
@test cx isa Flux.OneHotMatrix && cx.data isa CuArray
@test (cx .+ 1) isa CuArray
m = Chain(Dense(10, 5, tanh), Dense(5, 2), softmax)
cm = gpu(m)
@test all(p isa TrackedArray && p.data isa CuArray for p in params(cm))
@test cm(gpu(rand(10, 10))) isa TrackedArray{Float32,2,CuArray{Float32,2}}
x = [1,2,3]
cx = gpu(x)
@test Flux.crossentropy(x,x) Flux.crossentropy(cx,cx)
xs = param(rand(5,5))
ys = Flux.onehotbatch(1:5,1:5)
@test collect(cu(xs) .+ cu(ys)) collect(xs .+ ys)
c = gpu(Conv((2,2),3=>4))
l = c(gpu(rand(10,10,3,2)))
Flux.back!(sum(l))
c = gpu(CrossCor((2,2),3=>4))
l = c(gpu(rand(10,10,3,2)))
Flux.back!(sum(l))
end
@testset "onecold gpu" begin
y = Flux.onehotbatch(ones(3), 1:10) |> gpu;
@test Flux.onecold(y) isa CuArray
@test y[3,:] isa CuArray
end
if CuArrays.libcudnn != nothing
@info "Testing Flux/CUDNN"
include("cudnn.jl")
if !haskey(ENV, "CI_DISABLE_CURNN_TEST")
include("curnn.jl")
end
end