Flux.jl/src/tracker/array.jl
2018-05-02 15:59:46 +02:00

386 lines
13 KiB
Julia

struct TrackedArray{T,N,A<:AbstractArray{T,N}} <: AbstractArray{T,N}
tracker::Tracked{A}
data::A
grad::A
TrackedArray{T,N,A}(t::Tracked{A}, data::A) where {T,N,A} = new(t, data)
TrackedArray{T,N,A}(t::Tracked{A}, data::A, grad::A) where {T,N,A} = new(t, data, grad)
end
tracker(x::TrackedArray) = x.tracker
TrackedVector{T,A} = TrackedArray{T,1,A}
TrackedMatrix{T,A} = TrackedArray{T,2,A}
TrackedVecOrMat{T,A} = Union{TrackedVector{T,A},TrackedMatrix{T,A}}
track(c::Call, x::AbstractArray) = TrackedArray(c, x)
TrackedArray(c::Call, x::A) where A <: AbstractArray =
TrackedArray{eltype(A),ndims(A),A}(Tracked{A}(c, x), x)
TrackedArray(c::Call, x::A, Δ::A) where A <: AbstractArray =
TrackedArray{eltype(A),ndims(A),A}(Tracked{A}(c, x, Δ), x, Δ)
TrackedArray(x::AbstractArray) = TrackedArray(Call(nothing), x, zeros(x))
Base.eltype(x::Type{<:TrackedArray{T}}) where T <: Real = TrackedReal{T}
Base.show(io::IO, ::Type{TrackedArray{T,N,A}}) where {T,N,A<:AbstractArray{T,N}} =
print(io, "TrackedArray{…,$A}")
function Base.showarray(io::IO, X::TrackedArray, repr::Bool = true; header = true)
if repr
print(io, "param(")
Base.showarray(io, data(X), true)
print(io, ")")
else
header && print(io, "Tracked ")
Base.showarray(io, data(X), false, header = header)
end
end
Base.setindex!(xs::TrackedArray, v, i...) =
error("Can't differentiate `setindex!`")
back!(::TrackedArray) = error("Value is not scalar; use `back!(sum(x))` or `back!(x, Δ)`")
# Fallthrough methods
for f in :[Base.size, Base.ndims].args
@eval @inline $f(x::TrackedArray, a...) = $f(data(x), a...)
end
Base.similar(x::TrackedArray, dims::Union{AbstractUnitRange,Integer}...) =
similar(data(x), dims...)
Base.similar(x::TrackedArray, T::Type) = similar(data(x), T)
Base.:(==)(x::TrackedArray, y) = data(x) == y
Base.:(==)(y, x::TrackedArray) = y == data(x)
Base.:(==)(x::TrackedArray, y::TrackedArray) = data(x) == data(y)
# Array Stdlib
Base.getindex(xs::TrackedArray, i...) = track(getindex, xs, i...)
function back(::typeof(getindex), Δ, xs::TrackedArray, i...)
Δ′ = zeros(xs.data)
Δ′[i...] = Δ
@back(xs, Δ′)
end
Base.:-(xs::TrackedArray) = track(-, xs)
back(::typeof(-), Δ, xs::TrackedArray) = back(xs, -Δ)
Base.transpose(xs::TrackedArray) = track(transpose, xs)
Base.ctranspose(xs::TrackedArray) = track(ctranspose, xs)
back(::typeof(transpose), Δ, xs) = @back(xs, trim(xs, Δ.'))
back(::typeof(ctranspose), Δ, xs) = @back(xs, trim(xs, Δ'))
Base.repmat(x::TrackedVecOrMat, a::Integer...) = track(repmat, x, a...)
Base.repmat(x::TrackedVecOrMat, a::Int64...) = track(repmat, x, a...)
function back(::typeof(repmat), Δ, xs::TrackedVecOrMat, m, n=1)
Δ′ = similar(xs.data)
S = size(xs.data)
for (i,v) in enumerate(Δ)
d1 = divrem(i-1, S[1]*m)
x = d1[2] % S[1]+1
y = d1[1] % S[2]+1
Δ′[x, y] += v
end
back(xs, Δ′)
end
for f in [:vcat, :hcat]
@eval begin
Base.$f(a::TrackedArray...) = track($f, a...)
Base.$f(a::TrackedArray, b::Array...) = track($f, a, b...)
# assumes there is another function to capture Union{Matrix,Vector}... without any TrackedMatrix or TrackedVector
Base.$f(a::Union{TrackedMatrix,TrackedVector,Matrix,Vector}...) = track($f, a...)
end
end
function back(::typeof(vcat), Δ, xs...)
start = 0
for xsi in xs
i = map(_ -> :, size(xsi)) |> Base.tail
@back(xsi, Δ[start+1:start+size(xsi,1), i...])
start += size(xsi, 1)
end
end
function back(::typeof(hcat), Δ, xs...)
start = 0
for xsi in xs
if ndims(xsi) == 1
@back(xsi, Δ[:, start+1])
else
i = map(_ -> :, size(xsi)) |> Base.tail |> Base.tail
@back(xsi, Δ[:, start+1:start+size(xsi,2), i...])
end
start += size(xsi, 2)
end
end
Base.cat(dim::Int, a::TrackedArray...) = track(Base.cat, dim, a...)
Base.cat(dim::Int, a::TrackedArray, b::Array...) = track(Base.cat, dim, a, b...)
function back(::typeof(cat), Δ, dim, xs...)
start = 0
for xsi in xs
if ndims(xsi) < dim
i = map(_ -> :, size(xsi))
j = ones(Int, dim-ndims(xsi)-1)
@back(xsi, Δ[i..., j..., start+1])
else
i = fill(:, dim-1)
j = fill(:, ndims(xsi)-dim)
@back(xsi, Δ[i..., start+1:start+size(xsi,dim), j...])
end
start += size(xsi, dim)
end
end
Base.reshape(xs::TrackedArray, dims::Union{Colon,Int64}...) = reshape(xs, dims)
Base.reshape(xs::TrackedArray, dims::Tuple{Vararg{Union{Int64,Colon}}}) = reshape(xs, Base._reshape_uncolon(xs, dims))
Base.reshape(xs::TrackedArray, dims::Tuple{Vararg{Int64}}) = track(reshape, xs, dims)
back(::typeof(reshape), Δ, xs::TrackedArray, _...) =
back(xs, reshape(Δ, size(xs)))
Base.permutedims(xs::TrackedArray, dims) = track(permutedims, xs, dims)
back(::typeof(permutedims), Δ, xs::TrackedArray, dims) = back(xs, permutedims(Δ, invperm(dims)))
function _kron(mat1::AbstractMatrix,mat2::AbstractMatrix)
m1, n1 = size(mat1)
mat1_rsh = reshape(mat1,(1,m1,1,n1))
m2, n2 = size(mat2)
mat2_rsh = reshape(mat2,(m2,1,n2,1))
return reshape(mat1_rsh.*mat2_rsh, (m1*m2,n1*n2))
end
Base.kron(a::TrackedMatrix, b::TrackedMatrix) = _kron(a, b)
Base.kron(a::TrackedMatrix, b::AbstractMatrix) = _kron(a, b)
Base.kron(a::AbstractMatrix, b::TrackedMatrix) = _kron(a, b)
# Reductions
Base.sum(xs::TrackedArray, dim) = track(sum, xs, dim)
Base.sum(xs::TrackedArray) = track(sum, xs)
Base.sum(f::Union{Function,Type},xs::TrackedArray) = sum(f.(xs))
back(::typeof(sum), Δ, xs::TrackedArray, dim...) = back(xs, similar(xs.data) .= Δ)
Base.prod(xs::TrackedArray, dim) = track(prod, xs, dim)
Base.prod(xs::TrackedArray) = track(prod, xs)
Base.prod(f::Union{Function, Type}, xs::TrackedArray) = prod(f.(xs))
back(::typeof(prod), Δ, xs::TrackedArray, dim...) = back(xs, similar(xs.data) .= (prod(xs.data, dim...) ./ xs.data) .* Δ)
back(::typeof(prod), Δ, xs::TrackedArray) = back(xs, similar(xs.data) .= (reshape(.*(circshift.([reshape(xs.data, length(xs.data))], 1:length(xs.data)-1)...), size(xs.data))) .* Δ)
Base.findfirst(xs::TrackedArray, args...) = findfirst(xs.data, args...)
Base.mean(xs::TrackedArray) = track(mean, xs)
Base.mean(xs::TrackedArray, region) = track(mean, xs, region)
Base.maximum(xs::TrackedArray) = track(maximum, xs)
Base.maximum(xs::TrackedArray, region) = track(maximum, xs, region)
Base.minimum(xs::TrackedArray) = track(minimum, xs)
Base.minimum(xs::TrackedArray, region) = track(minimum, xs, region)
LinAlg.dot(xs::TrackedVector, ys::TrackedVector) = track(dot, xs, ys)
LinAlg.dot(xs::AbstractVector, ys::TrackedVector) = track(dot, xs, ys)
LinAlg.dot(xs::TrackedVector, ys::AbstractVector) = track(dot, xs, ys)
function back(::typeof(dot), Δ, xs, ys)
@back(xs, Δ.*data(ys))
@back(ys, Δ.*data(xs))
end
# Hacks to get std working
Base.std(x::TrackedArray; mean = Base.mean(x)) =
sqrt.(sum((x .- mean).^2) ./ (length(x)-1))
Base.std(x::TrackedArray, dim; mean = Base.mean(x, dim)) =
sqrt.(sum((x .- mean).^2, dim) ./ (size(x, dim)-1))
Base.vecnorm(x::TrackedArray, p::Real = 2) =
sum(abs.(x).^p .+ eps(0f0))^(1/p) # avoid d(sqrt(x))/dx == Inf at 0
back(::typeof(mean), Δ, xs::TrackedArray) = back(xs, similar(xs.data) .= Δ ./ length(xs.data))
back(::typeof(mean), Δ, xs::TrackedArray, region) =
back(xs, similar(xs.data) .= Δ ./ prod(size(xs.data, region...)))
function back(::typeof(maximum), Δ, xs::TrackedArray)
Δ′ = zeros(xs.data)
_, i = findmax(xs.data)
Δ′[i] = Δ
@back(xs, Δ′)
end
function back(::typeof(maximum), Δ, xs::TrackedArray, region)
Δ′ = zeros(xs.data)
_, is = findmax(xs.data, region)
Δ′[is] = Δ
@back(xs, Δ′)
end
function back(::typeof(minimum), Δ, xs::TrackedArray)
Δ′ = zeros(xs.data)
_, i = findmin(xs.data)
Δ′[i] = Δ
@back(xs, Δ′)
end
function back(::typeof(minimum), Δ, xs::TrackedArray, region)
Δ′ = zeros(xs.data)
_, is = findmin(xs.data, region)
Δ′[is] = Δ
@back(xs, Δ′)
end
# BLAS
Base.diagm(x::TrackedVector) = track(diagm, x)
back(::typeof(diagm), Δ, x) = @back(x, diag(Δ))
for f in :[*, Ac_mul_B, A_mul_Bc].args
@eval begin
import Base.$f
$f(a::TrackedMatrix, b::TrackedMatrix) = track($f, a, b)
$f(a::TrackedMatrix, b::AbstractMatrix) = track($f, a, b)
$f(a::AbstractMatrix, b::TrackedMatrix) = track($f, a, b)
$f(a::TrackedMatrix, b::TrackedVector) = track($f, a, b)
$f(a::TrackedMatrix, b::AbstractVector) = track($f, a, b)
$f(a::AbstractMatrix, b::TrackedVector) = track($f, a, b)
$f(a::TrackedVector, b::TrackedVector) = track($f, a, b)
$f(a::TrackedVector, b::AbstractVector) = track($f, a, b)
$f(a::AbstractVector, b::TrackedVector) = track($f, a, b)
end
end
function back(::typeof(*), Δ, a::AbstractMatrix, b::AbstractVecOrMat)
@back(a, A_mul_Bt(Δ, data(b)))
@back(b, At_mul_B(data(a), Δ))
end
function back(::typeof(Ac_mul_B), Δ, a::AbstractVecOrMat{<:Real}, b::AbstractVecOrMat{<:Real})
@back(a, A_mul_Bt(Δ, data(b))')
@back(b, data(a)*Δ)
end
function back(::typeof(A_mul_Bc), Δ, a::AbstractVecOrMat{<:Real}, b::AbstractVecOrMat{<:Real})
@back(a, Δ * data(b))
@back(b, At_mul_B(data(a), Δ)')
end
# Fast path for matrix-vector
function back(::typeof(*), Δ::AbstractVector, W::TrackedMatrix, x::AbstractVector)
if isleaf(W)
W.grad .+= Δ .* data(x).'
else
back(W, A_mul_Bt(Δ, data(x)))
end
@back(x, At_mul_B(data(W), Δ))
end
# NNlib
using NNlib
import NNlib: softmax, ∇softmax, logsoftmax, ∇logsoftmax, conv, maxpool, meanpool
softmax(xs::TrackedArray) = track(softmax, xs)
back(::typeof(softmax), Δ, xs) = @back(xs, ∇softmax(Δ, data(xs)))
logsoftmax(xs::TrackedArray) = track(logsoftmax, xs)
back(::typeof(logsoftmax), Δ, xs) = @back(xs, ∇logsoftmax(Δ, data(xs)))
# TODO: can store kwargs efficiently in namedtuples
_conv(x, w, stride, pad) = conv(x, w, stride = stride, pad = pad)
conv(x::TrackedArray{<:Real,N}, w::TrackedArray{<:Real,N}; stride = 1, pad = 0) where N =
track(_conv, x, w, stride, pad)
conv(x::AbstractArray{<:Real,N}, w::TrackedArray{<:Real,N}; stride = 1, pad = 0) where N =
track(_conv, x, w, stride, pad)
conv(x::TrackedArray{<:Real,N}, w::AbstractArray{<:Real,N}; stride = 1, pad = 0) where N =
track(_conv, x, w, stride, pad)
function back(::typeof(_conv), Δ, x, w, stride, pad)
@back(x, NNlib.∇conv_data(Δ, data(x), data(w); stride = stride, pad = pad))
@back(w, NNlib.∇conv_filter(Δ, data(x), data(w); stride = stride, pad = pad))
end
_maxpool(x, k, pad, stride) = maxpool(x, k; pad = pad, stride = stride)
maxpool(x::TrackedArray, k; pad = map(_->0,k), stride = k) =
track(_maxpool, x, k, pad, stride)
back_(::typeof(_maxpool), y, Δ, x, k, pad, stride) =
back(x, NNlib.∇maxpool(Δ, y, data(x), k, pad=pad, stride=stride))
_meanpool(x, k, pad, stride) = meanpool(x, k; pad = pad, stride = stride)
meanpool(x::TrackedArray, k; pad = map(_->0,k), stride = k) =
track(_meanpool, x, k, pad, stride)
back_(::typeof(_meanpool), y, Δ, x, k, pad, stride) =
back(x, NNlib.∇meanpool(Δ, y, data(x), k, pad=pad, stride=stride))
# Broadcasting
using ForwardDiff: Dual, partials
struct Broadcasted{F,T}
f::F
data::T
end
(b::Broadcasted)(xs...) = map(x -> x.value, b.data)
dualify(xs, n) = xs
dualify(xs::TrackedArray, ps) = map(x -> Dual(x, ps), data(xs))
dualify(xs::TrackedReal, ps) = Dual(data(xs), ps)
function tracked_broadcast(f, args::Vararg{Any,N}) where N
dargs = map((x,i) -> dualify(x, ntuple(j -> i==j, Val{N})), args, ntuple(identity, Val{N}))
out = broadcast(f, dargs...)
eltype(out) <: Dual || return out
b = Broadcasted(f, out)
track(Call(b, args...), b())
end
trim(x, Δ) = reshape(Δ, ntuple(i -> size(Δ, i), Val{ndims(x)}))
unbroadcast(x::AbstractArray, Δ) =
size(x) == size(Δ) ? Δ :
trim(x, sum(Δ, filter(n -> size(x, n) == 1, 1:ndims(Δ))))
unbroadcast(x::Number, Δ) = sum(Δ)
function getpartial(Δ, x, i)
@inbounds p = getindex(partials(x), i)
return Δ * p
end
function back(b::Broadcasted, Δ, args::Vararg{Any,N}) where N
Δargs = ntuple(i -> getpartial.(Δ, b.data, i), Val{N})
foreach((x, Δ) -> @back(x, unbroadcast(x, Δ)), args, Δargs)
end
Base.Broadcast._containertype(::Type{<:TrackedReal}) = TrackedArray
Base.Broadcast._containertype(::Type{<:TrackedArray}) = TrackedArray
Base.Broadcast.promote_containertype(::Type{TrackedArray}, ::Type{TrackedArray}) = TrackedArray
Base.Broadcast.promote_containertype(::Type{Array}, ::Type{TrackedArray}) = TrackedArray
Base.Broadcast.promote_containertype(::Type{TrackedArray}, ::Type{Array}) = TrackedArray
Base.Broadcast.promote_containertype(::Type{TrackedArray}, ct) = TrackedArray
Base.Broadcast.promote_containertype(ct, ::Type{TrackedArray}) = TrackedArray
Base.Broadcast.broadcast_indices(::Type{TrackedArray}, A::Ref) = ()
Base.Broadcast.broadcast_indices(::Type{TrackedArray}, A) = indices(A)
Base.Broadcast.broadcast_c(f, ::Type{TrackedArray}, A, Bs...) = tracked_broadcast(f, A, Bs...)