2024-08-22 15:10:28 +00:00
|
|
|
import torch
|
2024-09-24 09:11:54 +00:00
|
|
|
import random
|
|
|
|
import numpy as np
|
2024-08-22 15:10:28 +00:00
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
from torchvision import datasets
|
|
|
|
from torch.utils.data import DataLoader
|
|
|
|
import torchvision.transforms as transforms
|
|
|
|
|
2024-09-24 09:11:54 +00:00
|
|
|
torch.pi = torch.acos(torch.zeros(1)).item() * 2 # which is 3.1415927410125732
|
|
|
|
|
2024-08-22 15:10:28 +00:00
|
|
|
|
2024-09-20 08:26:56 +00:00
|
|
|
class AddGaussianNoise(object):
|
|
|
|
def __init__(self, mean=0., std=1.):
|
|
|
|
self.std = std
|
|
|
|
self.mean = mean
|
|
|
|
|
|
|
|
def __call__(self, tensor):
|
|
|
|
return tensor + torch.randn(tensor.size()) * self.std + self.mean
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)
|
|
|
|
|
|
|
|
|
2024-09-24 09:11:54 +00:00
|
|
|
class AddRaleighNoise(object):
|
|
|
|
def __init__(self, a=0.0, b=0.0):
|
|
|
|
self.std = (b * (4 - np.pi)) / 4
|
|
|
|
self.mean = a + np.sqrt((np.pi * b) / 4)
|
|
|
|
|
|
|
|
def __call__(self, tensor):
|
2024-09-24 09:35:00 +00:00
|
|
|
print('(mean={0}, std={1})'.format(self.mean, self.std))
|
2024-09-24 09:11:54 +00:00
|
|
|
return tensor + torch.randn(tensor.size()) * self.std + self.mean
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)
|
|
|
|
|
|
|
|
|
|
|
|
class AddErlangNoise(object):
|
|
|
|
def __init__(self, a=0.0, b=0.0):
|
|
|
|
if a == 0.0:
|
|
|
|
self.std = 0.0
|
|
|
|
self.mean = 0.0
|
|
|
|
else:
|
|
|
|
self.std = b / a
|
|
|
|
self.mean = b / (2*a)
|
|
|
|
|
|
|
|
def __call__(self, tensor):
|
|
|
|
if self.mean == 0.0:
|
|
|
|
return tensor * self.mean
|
|
|
|
else:
|
|
|
|
return tensor + torch.randn(tensor.size()) * self.std + self.mean
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)
|
|
|
|
|
|
|
|
|
|
|
|
class AddExponentialNoise(object):
|
|
|
|
def __init__(self, a=0.0):
|
|
|
|
if a == 0.0:
|
|
|
|
self.mean = 0.0
|
|
|
|
else:
|
|
|
|
self.std = 1 / (2*a)
|
|
|
|
self.mean = 1 / a
|
|
|
|
|
|
|
|
def __call__(self, tensor):
|
|
|
|
if self.mean == 0.0:
|
|
|
|
return tensor * self.mean
|
|
|
|
else:
|
|
|
|
return tensor + torch.randn(tensor.size()) * self.std + self.mean
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)
|
|
|
|
|
|
|
|
|
|
|
|
class AddUniformNoise(object):
|
|
|
|
def __init__(self, a=0.0, b=0.0):
|
|
|
|
if a == 0.0:
|
|
|
|
self.std = 0.0
|
|
|
|
self.mean = 0.0
|
|
|
|
else:
|
|
|
|
self.std = (b - a)**2 / 12
|
|
|
|
self.mean = (b + a) / 2
|
|
|
|
|
|
|
|
def __call__(self, tensor):
|
|
|
|
if self.mean == 0.0:
|
|
|
|
return tensor * self.mean
|
|
|
|
else:
|
|
|
|
return tensor + (torch.randn(tensor.size()) * self.std + self.mean)
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)
|
|
|
|
|
|
|
|
|
2024-09-25 10:49:08 +00:00
|
|
|
class AddImpulseNoise(object):
|
2024-09-24 09:11:54 +00:00
|
|
|
def __init__(self, a=0.0):
|
|
|
|
self.value = a
|
|
|
|
|
|
|
|
def __call__(self, tensor):
|
|
|
|
if random.gauss(0, 1) > 0:
|
|
|
|
return tensor * self.value
|
|
|
|
elif random.gauss(0, 1) < 0:
|
|
|
|
return tensor * (-1 * self.value)
|
|
|
|
else:
|
|
|
|
return tensor * 0.0
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return self.__class__.__name__ + '(a={0})'.format(self.value)
|
|
|
|
|
|
|
|
|
2024-08-22 15:10:28 +00:00
|
|
|
def get_mnist_loaders(batch_size=128, test_batch_size=1000, perc=1.0):
|
|
|
|
transform_train = transforms.Compose([
|
|
|
|
transforms.RandomCrop(28, padding=4),
|
|
|
|
transforms.ToTensor(),
|
|
|
|
transforms.Normalize((0.5,), (0.5,)),
|
2024-09-24 09:11:54 +00:00
|
|
|
# AddGaussianNoise(0., 0.0),
|
|
|
|
# AddRaleighNoise(1, 1),
|
|
|
|
# AddErlangNoise(0.0001, 0.0001),
|
|
|
|
# AddExponentialNoise(2),
|
|
|
|
# AddUniformNoise(2, 1),
|
2024-09-25 10:49:08 +00:00
|
|
|
AddImpulseNoise(0.5),
|
2024-08-22 15:10:28 +00:00
|
|
|
])
|
|
|
|
|
|
|
|
transform_test = transforms.Compose([
|
|
|
|
transforms.ToTensor(),
|
|
|
|
transforms.Normalize((0.5,), (0.5,)),
|
|
|
|
])
|
|
|
|
|
|
|
|
train_loader = DataLoader(
|
2024-09-24 09:11:54 +00:00
|
|
|
datasets.MNIST(root='.data/mnist', train=True, download=True, transform=transform_train),
|
|
|
|
batch_size=batch_size, shuffle=True, num_workers=2, drop_last=True
|
2024-08-22 15:10:28 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
train_eval_loader = DataLoader(
|
|
|
|
datasets.MNIST(root='.data/mnist', train=True, download=True, transform=transform_test),
|
|
|
|
batch_size=test_batch_size, shuffle=True, num_workers=2, drop_last=True
|
|
|
|
)
|
|
|
|
|
|
|
|
test_loader = DataLoader(
|
|
|
|
datasets.MNIST(root='.data/mnist', train=False, download=True, transform=transform_test),
|
|
|
|
batch_size=test_batch_size, shuffle=False, num_workers=2, drop_last=True
|
|
|
|
)
|
|
|
|
|
|
|
|
return train_loader, test_loader, train_eval_loader
|
|
|
|
|
|
|
|
|
2024-09-20 08:26:56 +00:00
|
|
|
def get_cifar_loaders(batch_size=128, test_batch_size=1000, perc=1.0):
|
|
|
|
transform_train = transforms.Compose([
|
|
|
|
transforms.ToTensor(),
|
2024-09-24 09:11:54 +00:00
|
|
|
transforms.RandomCrop(32, padding=0),
|
|
|
|
# transforms.Normalize((0.5,), (0.5,)),
|
|
|
|
# AddGaussianNoise(0., 0.25),
|
2024-09-24 09:35:00 +00:00
|
|
|
AddRaleighNoise(1, 200), # CIFAR requires big b value
|
2024-09-24 09:11:54 +00:00
|
|
|
# AddErlangNoise(0.0001, 0.0001),
|
|
|
|
# AddExponentialNoise(2),
|
2024-09-24 09:35:00 +00:00
|
|
|
# AddUniformNoise(100, 1), # CIFAR requires big a value
|
2024-09-25 10:49:08 +00:00
|
|
|
# AddImpulseNoise(0.5),
|
2024-09-20 08:26:56 +00:00
|
|
|
])
|
|
|
|
|
|
|
|
transform_test = transforms.Compose([
|
|
|
|
transforms.ToTensor(),
|
|
|
|
transforms.Normalize((0.5,), (0.5,)),
|
|
|
|
])
|
|
|
|
|
|
|
|
train_loader = DataLoader(
|
2024-09-24 09:11:54 +00:00
|
|
|
datasets.CIFAR10(root='.data/cifar', train=True, download=True, transform=transform_train),
|
|
|
|
batch_size=batch_size, shuffle=True, num_workers=2, drop_last=True
|
2024-09-20 08:26:56 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
train_eval_loader = DataLoader(
|
|
|
|
datasets.CIFAR10(root='.data/cifar', train=True, download=True, transform=transform_test),
|
|
|
|
batch_size=test_batch_size, shuffle=True, num_workers=2, drop_last=True
|
|
|
|
)
|
|
|
|
|
|
|
|
test_loader = DataLoader(
|
|
|
|
datasets.CIFAR10(root='.data/cifar', train=False, download=True, transform=transform_test),
|
|
|
|
batch_size=test_batch_size, shuffle=False, num_workers=2, drop_last=True
|
|
|
|
)
|
|
|
|
|
|
|
|
return train_loader, test_loader, train_eval_loader
|
|
|
|
|
|
|
|
|
2024-08-22 15:10:28 +00:00
|
|
|
if __name__ == '__main__':
|
2024-09-20 08:26:56 +00:00
|
|
|
train_loader, test_loader, train_eval_loader\
|
|
|
|
= get_cifar_loaders()
|
|
|
|
|
|
|
|
#for batch_idx, (data, target) in tqdm(enumerate(train_loader), total=len(train_loader)):
|
|
|
|
# sample_idx = torch.randint(len(data), size=(1,)).item()
|
|
|
|
# img = data[sample_idx]
|
|
|
|
# # print(data)
|
|
|
|
|
|
|
|
images, labels = next(iter(train_loader))
|
2024-09-24 09:11:54 +00:00
|
|
|
plt.imshow(images[0].permute(1, 2, 0))
|
|
|
|
# plt.imshow(images[0].reshape(28, 28), cmap='gray')
|
2024-09-20 08:26:56 +00:00
|
|
|
plt.show()
|
|
|
|
#print(images[0].shape)
|