bayesian_resnet_experiment/resnet.py

109 lines
4.1 KiB
Python

import tensorflow as tf
from hyper import NUM_CLASSES
from resnet_block import make_basic_block_layer, make_bottleneck_layer
class ResNetTypeI(tf.keras.Model):
def __init__(self, layer_params):
super(ResNetTypeI, self).__init__()
self.conv1 = tf.keras.layers.Conv2D(filters=64,
kernel_size=(7, 7),
strides=2,
padding="same")
self.bn1 = tf.keras.layers.BatchNormalization()
self.pool1 = tf.keras.layers.MaxPool2D(pool_size=(3, 3),
strides=2,
padding="same")
self.layer1 = make_basic_block_layer(filter_num=64,
blocks=layer_params[0])
self.layer2 = make_basic_block_layer(filter_num=128,
blocks=layer_params[1],
stride=2)
self.layer3 = make_basic_block_layer(filter_num=256,
blocks=layer_params[2],
stride=2)
self.layer4 = make_basic_block_layer(filter_num=512,
blocks=layer_params[3],
stride=2)
self.avgpool = tf.keras.layers.GlobalAveragePooling2D()
self.fc = tf.keras.layers.Dense(units=NUM_CLASSES, activation=tf.keras.activations.softmax)
def call(self, inputs, training=None, mask=None):
x = self.conv1(inputs)
x = self.bn1(x, training=training)
x = tf.nn.relu(x)
x = self.pool1(x)
x = self.layer1(x, training=training)
x = self.layer2(x, training=training)
x = self.layer3(x, training=training)
x = self.layer4(x, training=training)
x = self.avgpool(x)
output = self.fc(x)
return output
class ResNetTypeII(tf.keras.Model):
def __init__(self, layer_params):
super(ResNetTypeII, self).__init__()
self.conv1 = tf.keras.layers.Conv2D(filters=64,
kernel_size=(7, 7),
strides=2,
padding="same")
self.bn1 = tf.keras.layers.BatchNormalization()
self.pool1 = tf.keras.layers.MaxPool2D(pool_size=(3, 3),
strides=2,
padding="same")
self.layer1 = make_bottleneck_layer(filter_num=64,
blocks=layer_params[0])
self.layer2 = make_bottleneck_layer(filter_num=128,
blocks=layer_params[1],
stride=2)
self.layer3 = make_bottleneck_layer(filter_num=256,
blocks=layer_params[2],
stride=2)
self.layer4 = make_bottleneck_layer(filter_num=512,
blocks=layer_params[3],
stride=2)
self.avgpool = tf.keras.layers.GlobalAveragePooling2D()
self.fc = tf.keras.layers.Dense(units=NUM_CLASSES, activation=tf.keras.activations.softmax)
def call(self, inputs, training=None, mask=None):
x = self.conv1(inputs)
x = self.bn1(x, training=training)
x = tf.nn.relu(x)
x = self.pool1(x)
x = self.layer1(x, training=training)
x = self.layer2(x, training=training)
x = self.layer3(x, training=training)
x = self.layer4(x, training=training)
x = self.avgpool(x)
output = self.fc(x)
return output
def resnet_18():
return ResNetTypeI(layer_params=[2, 2, 2, 2])
def resnet_34():
return ResNetTypeI(layer_params=[3, 4, 6, 3])
def resnet_50():
return ResNetTypeII(layer_params=[3, 4, 6, 3])
def resnet_101():
return ResNetTypeII(layer_params=[3, 4, 23, 3])
def resnet_152():
return ResNetTypeII(layer_params=[3, 8, 36, 3])