bayesian_resnet_experiment/resnet_block.py

100 lines
3.8 KiB
Python

import tensorflow as tf
class BasicBlock(tf.keras.layers.Layer):
def __init__(self, filter_num, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = tf.keras.layers.Conv2D(filters=filter_num,
kernel_size=(3, 3),
strides=stride,
padding="same")
self.bn1 = tf.keras.layers.BatchNormalization()
self.conv2 = tf.keras.layers.Conv2D(filters=filter_num,
kernel_size=(3, 3),
strides=1,
padding="same")
self.bn2 = tf.keras.layers.BatchNormalization()
if stride != 1:
self.downsample = tf.keras.Sequential()
self.downsample.add(tf.keras.layers.Conv2D(filters=filter_num,
kernel_size=(1, 1),
strides=stride))
self.downsample.add(tf.keras.layers.BatchNormalization())
else:
self.downsample = lambda x: x
def call(self, inputs, training=None, **kwargs):
residual = self.downsample(inputs)
x = self.conv1(inputs)
x = self.bn1(x, training=training)
x = tf.nn.relu(x)
x = self.conv2(x)
x = self.bn2(x, training=training)
output = tf.nn.relu(tf.keras.layers.add([residual, x]))
return output
class BottleNeck(tf.keras.layers.Layer):
def __init__(self, filter_num, stride=1):
super(BottleNeck, self).__init__()
self.conv1 = tf.keras.layers.Conv2D(filters=filter_num,
kernel_size=(1, 1),
strides=1,
padding='same')
self.bn1 = tf.keras.layers.BatchNormalization()
self.conv2 = tf.keras.layers.Conv2D(filters=filter_num,
kernel_size=(3, 3),
strides=stride,
padding='same')
self.bn2 = tf.keras.layers.BatchNormalization()
self.conv3 = tf.keras.layers.Conv2D(filters=filter_num * 4,
kernel_size=(1, 1),
strides=1,
padding='same')
self.bn3 = tf.keras.layers.BatchNormalization()
self.downsample = tf.keras.Sequential()
self.downsample.add(tf.keras.layers.Conv2D(filters=filter_num * 4,
kernel_size=(1, 1),
strides=stride))
self.downsample.add(tf.keras.layers.BatchNormalization())
def call(self, inputs, training=None, **kwargs):
residual = self.downsample(inputs)
x = self.conv1(inputs)
x = self.bn1(x, training=training)
x = tf.nn.relu(x)
x = self.conv2(x)
x = self.bn2(x, training=training)
x = tf.nn.relu(x)
x = self.conv3(x)
x = self.bn3(x, training=training)
output = tf.nn.relu(tf.keras.layers.add([residual, x]))
return output
def make_basic_block_layer(filter_num, blocks, stride=1):
res_block = tf.keras.Sequential()
res_block.add(BasicBlock(filter_num, stride=stride))
for _ in range(1, blocks):
res_block.add(BasicBlock(filter_num, stride=1))
return res_block
def make_bottleneck_layer(filter_num, blocks, stride=1):
res_block = tf.keras.Sequential()
res_block.add(BottleNeck(filter_num, stride=stride))
for _ in range(1, blocks):
res_block.add(BottleNeck(filter_num, stride=1))
return res_block