bayesiancnn/stopping_crit.py

130 lines
3.3 KiB
Python
Raw Normal View History

# import math
2024-05-10 09:59:24 +00:00
import pickle
from time import sleep
2024-05-10 09:59:24 +00:00
from gpu_power_func import total_watt_consumed
with open("configuration.pkl", "rb") as file:
2024-05-10 09:59:24 +00:00
while True:
try:
cfg = pickle.load(file)
except EOFError:
break
def non_decreasing(lst: list):
"""
Check that a list is non decreasing
"""
return all(x <= y for x, y in zip(lst, lst[1:]))
def non_increasing(lst):
"""
Check that a list is non inreasing
"""
return all(x >= y for x, y in zip(lst, lst[1:]))
def monotonic(lst):
"""
Check that a list is monotonic
"""
return non_decreasing(lst) or non_increasing(lst)
def strictly_increasing(lst):
"""
Check that a list is strictly inreasing
"""
return all(x < y for x, y in zip(lst, lst[1:]))
def strictly_decreasing(lst):
"""
Check that a list is strictly decreasing
"""
return all(x > y for x, y in zip(lst, lst[1:]))
def strictly_monotonic(lst):
"""
Check that a list is strictly monotonic
"""
return strictly_increasing(lst) or strictly_decreasing(lst)
def count_parameters(model):
"""Counts model amount of trainable parameters"""
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def efficiency_stop(model, accuracy, batch, sensitivity=0.001):
"""
This function stops when a certain amount of generalization takes place
taking into account the model efficiency
"""
try:
energy = total_watt_consumed(cfg["pickle_path"])
except Exception as e:
sleep(3)
energy = total_watt_consumed(cfg["pickle_path"])
efficiency = accuracy / energy
print(f"Current Efficiency: {1 - efficiency}")
no_parameters = count_parameters(model)
if (efficiency * no_parameters / (batch / 2) >= sensitivity) and (accuracy >= 0.5):
return 1
return 0
def e_stop(
early_stopping: list,
train_acc: float,
epoch: int,
patience: int = 4,
sensitivity: float = 1e-9,
):
"""
This function stops training early
"""
2024-05-10 09:59:24 +00:00
early_stopping.append(train_acc)
if patience in (0, 1):
print("Stopping Early")
return 1
if epoch % patience == 0 and epoch > 0:
early_stopping = early_stopping[-patience : len(early_stopping)]
ini = early_stopping.pop(0)
early_stopping = list(map(lambda x: x - sensitivity, early_stopping))
early_stopping.insert(0, ini)
values = ""
for i, v in enumerate(early_stopping):
values += f"Value {i+1}: {v} > "
print(values)
if (train_acc > 0.5) and not strictly_increasing(early_stopping):
print("Stopping Early")
return 1
2024-05-10 09:59:24 +00:00
del early_stopping[:]
return 0
def energy_bound(threshold: float = 100000.0):
"""Stops training when a specified amount of energy is consumed"""
2024-05-10 09:59:24 +00:00
try:
energy = total_watt_consumed(cfg["pickle_path"])
except Exception as e:
sleep(3)
energy = total_watt_consumed(cfg["pickle_path"])
print(f"Energy used: {energy}")
2024-05-10 09:59:24 +00:00
if energy > threshold:
print("Energy bound achieved")
return 1
return 0
def accuracy_bound(train_acc: float, threshold: float = 0.99):
"""Stops training when a specified amount of accuracy is achieved"""
2024-05-10 09:59:24 +00:00
if train_acc >= threshold:
print("Accuracy bound achieved")
return 1
return 0