54 lines
1.9 KiB
Python
54 lines
1.9 KiB
Python
|
import torch.nn as nn
|
||
|
import math
|
||
|
from layers import BBB_Linear, BBB_Conv2d
|
||
|
from layers import BBB_LRT_Linear, BBB_LRT_Conv2d
|
||
|
from layers import FlattenLayer, ModuleWrapper
|
||
|
|
||
|
|
||
|
class BBBAlexNet(ModuleWrapper):
|
||
|
'''The architecture of AlexNet with Bayesian Layers'''
|
||
|
|
||
|
def __init__(self, outputs, inputs, priors, layer_type='lrt', activation_type='softplus'):
|
||
|
super(BBBAlexNet, self).__init__()
|
||
|
|
||
|
self.num_classes = outputs
|
||
|
self.layer_type = layer_type
|
||
|
self.priors = priors
|
||
|
|
||
|
if layer_type=='lrt':
|
||
|
BBBLinear = BBB_LRT_Linear
|
||
|
BBBConv2d = BBB_LRT_Conv2d
|
||
|
elif layer_type=='bbb':
|
||
|
BBBLinear = BBB_Linear
|
||
|
BBBConv2d = BBB_Conv2d
|
||
|
else:
|
||
|
raise ValueError("Undefined layer_type")
|
||
|
|
||
|
if activation_type=='softplus':
|
||
|
self.act = nn.Softplus
|
||
|
elif activation_type=='relu':
|
||
|
self.act = nn.ReLU
|
||
|
else:
|
||
|
raise ValueError("Only softplus or relu supported")
|
||
|
|
||
|
self.conv1 = BBBConv2d(inputs, 64, 11, stride=4, padding=5, bias=True, priors=self.priors)
|
||
|
self.act1 = self.act()
|
||
|
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
|
||
|
|
||
|
self.conv2 = BBBConv2d(64, 192, 5, padding=2, bias=True, priors=self.priors)
|
||
|
self.act2 = self.act()
|
||
|
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
|
||
|
|
||
|
self.conv3 = BBBConv2d(192, 384, 3, padding=1, bias=True, priors=self.priors)
|
||
|
self.act3 = self.act()
|
||
|
|
||
|
self.conv4 = BBBConv2d(384, 256, 3, padding=1, bias=True, priors=self.priors)
|
||
|
self.act4 = self.act()
|
||
|
|
||
|
self.conv5 = BBBConv2d(256, 128, 3, padding=1, bias=True, priors=self.priors)
|
||
|
self.act5 = self.act()
|
||
|
self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2)
|
||
|
|
||
|
self.flatten = FlattenLayer(1 * 1 * 128)
|
||
|
self.classifier = BBBLinear(1 * 1 * 128, outputs, bias=True, priors=self.priors)
|