bayesiancnn/models/BayesianModels/BayesianLeNet.py

50 lines
1.7 KiB
Python
Raw Normal View History

2024-05-10 09:59:24 +00:00
import math
import torch.nn as nn
from layers import BBB_Linear, BBB_Conv2d
from layers import BBB_LRT_Linear, BBB_LRT_Conv2d
from layers import FlattenLayer, ModuleWrapper
class BBBLeNet(ModuleWrapper):
'''The architecture of LeNet with Bayesian Layers'''
def __init__(self, outputs, inputs, priors, layer_type='lrt', activation_type='softplus',wide=2):
super(BBBLeNet, self).__init__()
self.num_classes = outputs
self.layer_type = layer_type
self.priors = priors
if layer_type=='lrt':
BBBLinear = BBB_LRT_Linear
BBBConv2d = BBB_LRT_Conv2d
elif layer_type=='bbb':
BBBLinear = BBB_Linear
BBBConv2d = BBB_Conv2d
else:
raise ValueError("Undefined layer_type")
if activation_type=='softplus':
self.act = nn.Softplus
elif activation_type=='relu':
self.act = nn.ReLU
else:
raise ValueError("Only softplus or relu supported")
self.conv1 = BBBConv2d(inputs, 6*wide, 5, padding=0, bias=True, priors=self.priors)
self.act1 = self.act()
self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
self.conv2 = BBBConv2d(6*wide, 16*wide, 5, padding=0, bias=True, priors=self.priors)
self.act2 = self.act()
self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
self.flatten = FlattenLayer(5 * 5 * 16*wide)
self.fc1 = BBBLinear(5 * 5 * 16*wide, 120*wide, bias=True, priors=self.priors)
self.act3 = self.act()
self.fc2 = BBBLinear(120*wide, 84, bias=True, priors=self.priors)
self.act4 = self.act()
self.fc3 = BBBLinear(84, outputs, bias=True, priors=self.priors)