41 lines
1.4 KiB
Python
41 lines
1.4 KiB
Python
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
import numpy as np
|
||
|
|
||
|
def conv_init(m):
|
||
|
classname = m.__class__.__name__
|
||
|
if classname.find('Conv') != -1:
|
||
|
#nn.init.xavier_uniform(m.weight, gain=np.sqrt(2))
|
||
|
nn.init.normal_(m.weight, mean=0, std=1)
|
||
|
nn.init.constant(m.bias, 0)
|
||
|
|
||
|
class AlexNet(nn.Module):
|
||
|
|
||
|
def __init__(self, num_classes, inputs=3):
|
||
|
super(AlexNet, self).__init__()
|
||
|
self.features = nn.Sequential(
|
||
|
nn.Conv2d(inputs, 64, kernel_size=11, stride=4, padding=5),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Dropout(p=0.5),
|
||
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
||
|
nn.Conv2d(64, 192, kernel_size=5, padding=2),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
||
|
nn.Conv2d(192, 384, kernel_size=3, padding=1),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Dropout(p=0.5),
|
||
|
nn.Conv2d(384, 256, kernel_size=3, padding=1),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Conv2d(256, 256, kernel_size=3, padding=1),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Dropout(p=0.5),
|
||
|
nn.MaxPool2d(kernel_size=2, stride=2),
|
||
|
)
|
||
|
self.classifier = nn.Linear(256, num_classes)
|
||
|
|
||
|
def forward(self, x):
|
||
|
x = self.features(x)
|
||
|
x = x.view(x.size(0), -1)
|
||
|
x = self.classifier(x)
|
||
|
return x
|