Commited code from 2024
This commit is contained in:
parent
c900129ec9
commit
931cb79e42
|
@ -1,4 +1,4 @@
|
|||
Copyright (c) 2024 TastyPancakes.
|
||||
Copyright (c) 2024 Eduardo Cueto-Mendoza.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
|
||||
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
# Energy efficiency comparison
|
||||
|
||||
This experiment compares a Frequentist CNN model against a Bayesian CNN model
|
||||
This experiment compares a Frequentist CNN model against a Bayesian CNN model
|
||||
|
||||
## Example run command
|
||||
|
||||
python run_service.py -f1 -s -e && sleep 60 && python run_service.py -f2 -s -e && sleep 60 && python run_service.py -f3 -s -e && sleep 60 && python run_service.py -f4 -s -e && sleep 60 && python run_service.py -f5 -s -e && sleep 60 & python run_service.py -f6 -s -e && sleep 60 && python run_service.py -f7 -s -e && sleep 60 && python run_service.py -b1 -s -e && sleep 60 && python run_service.py -b2 -s -e && sleep 60 && python run_service.py -b3 -s -e && sleep 60 && python run_service.py -b4 -s -e && sleep 60 && python run_service.py -b5 -s -e && sleep 60 && python run_service.py -b6 -s -e && sleep 60 && python run_service.py -b7 -s -e && sleep 60
|
||||
|
|
|
@ -22,6 +22,6 @@ def makeArguments(arguments: ArgumentParser) -> dict:
|
|||
help="Save model")
|
||||
all_args.add_argument('--net_type', default='lenet', type=str,
|
||||
help='model = [lenet/AlexNet/3Conv3FC]')
|
||||
all_args.add_argument('--dataset', default='CIFAR10', type=str,
|
||||
all_args.add_argument('--dataset', default='MNIST', type=str,
|
||||
help='dataset = [MNIST/CIFAR10/CIFAR100]')
|
||||
return vars(all_args.parse_args())
|
||||
|
|
|
@ -4,7 +4,7 @@ import os
|
|||
import data
|
||||
import utils
|
||||
import torch
|
||||
import pickle
|
||||
# import pickle
|
||||
import metrics
|
||||
import numpy as np
|
||||
from datetime import datetime
|
||||
|
@ -15,12 +15,41 @@ from models.BayesianModels.BayesianAlexNet import BBBAlexNet
|
|||
from models.BayesianModels.Bayesian3Conv3FC import BBB3Conv3FC
|
||||
from stopping_crit import earlyStopping, energyBound, accuracyBound
|
||||
|
||||
with (open("configuration.pkl", "rb")) as file:
|
||||
while True:
|
||||
try:
|
||||
cfg = pickle.load(file)
|
||||
except EOFError:
|
||||
break
|
||||
# with (open("configuration.pkl", "rb")) as file:
|
||||
# while True:
|
||||
# try:
|
||||
# cfg = pickle.load(file)
|
||||
# except EOFError:
|
||||
# break
|
||||
|
||||
cfg = {
|
||||
"model": {"net_type": "lenet", "type": "bayes", "size": 1,
|
||||
"layer_type": "lrt", "activation_type": "softplus",
|
||||
"priors": {
|
||||
'prior_mu': 0,
|
||||
'prior_sigma': 0.1,
|
||||
'posterior_mu_initial': (0, 0.1), # (mean,std) normal_
|
||||
'posterior_rho_initial': (-5, 0.1), # (mean,std) normal_
|
||||
},
|
||||
"n_epochs": 100,
|
||||
"sens": 1e-9,
|
||||
"energy_thrs": 100000,
|
||||
"acc_thrs": 0.99,
|
||||
"lr": 0.001,
|
||||
"num_workers": 4,
|
||||
"valid_size": 0.2,
|
||||
"batch_size": 256,
|
||||
"train_ens": 1,
|
||||
"valid_ens": 1,
|
||||
"beta_type": 0.1, # 'Blundell','Standard',etc.
|
||||
# Use float for const value
|
||||
},
|
||||
#"data": "CIFAR10",
|
||||
"data": "MNIST",
|
||||
"stopping_crit": 1,
|
||||
"save": 1,
|
||||
"pickle_path": None,
|
||||
}
|
||||
|
||||
|
||||
# CUDA settings
|
||||
|
@ -126,8 +155,7 @@ def run(dataset, net_type):
|
|||
activation_type).to(device)
|
||||
|
||||
ckpt_dir = f'checkpoints/{dataset}/bayesian'
|
||||
ckpt_name = f'checkpoints/{dataset}/bayesian/model_{net_type}_{layer_type}\
|
||||
_{activation_type}_{cfg["model"]["size"]}.pt'
|
||||
ckpt_name = f'checkpoints/{dataset}/bayesian/model_{net_type}_{layer_type}_{activation_type}_{cfg["model"]["size"]}'
|
||||
|
||||
if not os.path.exists(ckpt_dir):
|
||||
os.makedirs(ckpt_dir, exist_ok=True)
|
||||
|
@ -178,18 +206,23 @@ def run(dataset, net_type):
|
|||
break
|
||||
elif stp == 4:
|
||||
print('Using accuracy bound')
|
||||
if accuracyBound(train_acc, cfg.acc_thrs) == 1:
|
||||
if accuracyBound(train_acc, cfg["model"]["acc_thrs"]) == 1:
|
||||
break
|
||||
else:
|
||||
print('Training for {} epochs'.format(cfg["model"]["n_epochs"]))
|
||||
|
||||
if sav == 1:
|
||||
# save model when finished
|
||||
if epoch == cfg.n_epochs-1:
|
||||
torch.save(net.state_dict(), ckpt_name)
|
||||
# if epoch == cfg["model"]["n_epochs"]-1:
|
||||
torch.save({
|
||||
'epoch': epoch,
|
||||
'model_state_dict': net.state_dict(),
|
||||
'optimizer_state_dict': optimizer.state_dict(),
|
||||
'loss': train_loss,
|
||||
}, ckpt_name + '_epoch_{}.pt'.format(epoch))
|
||||
|
||||
with open("bayes_exp_data_"+str(cfg["model"]["size"])+".pkl", 'wb') as f:
|
||||
pickle.dump(train_data, f)
|
||||
# with open("bayes_exp_data_"+str(cfg["model"]["size"])+".pkl", 'wb') as f:
|
||||
# pickle.dump(train_data, f)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -2,7 +2,7 @@ from __future__ import print_function
|
|||
import os
|
||||
import data
|
||||
import torch
|
||||
import pickle
|
||||
# import pickle
|
||||
import metrics
|
||||
import numpy as np
|
||||
import torch.nn as nn
|
||||
|
@ -13,12 +13,41 @@ from models.NonBayesianModels.AlexNet import AlexNet
|
|||
from stopping_crit import earlyStopping, energyBound, accuracyBound
|
||||
from models.NonBayesianModels.ThreeConvThreeFC import ThreeConvThreeFC
|
||||
|
||||
with (open("configuration.pkl", "rb")) as file:
|
||||
while True:
|
||||
try:
|
||||
cfg = pickle.load(file)
|
||||
except EOFError:
|
||||
break
|
||||
# with (open("configuration.pkl", "rb")) as file:
|
||||
# while True:
|
||||
# try:
|
||||
# cfg = pickle.load(file)
|
||||
# except EOFError:
|
||||
# break
|
||||
|
||||
cfg = {
|
||||
"model": {"net_type": "lenet", "type": "freq", "size": 1,
|
||||
"layer_type": "lrt", "activation_type": "softplus",
|
||||
"priors": {
|
||||
'prior_mu': 0,
|
||||
'prior_sigma': 0.1,
|
||||
'posterior_mu_initial': (0, 0.1), # (mean,std) normal_
|
||||
'posterior_rho_initial': (-5, 0.1), # (mean,std) normal_
|
||||
},
|
||||
"n_epochs": 100,
|
||||
"sens": 1e-9,
|
||||
"energy_thrs": 100000,
|
||||
"acc_thrs": 0.99,
|
||||
"lr": 0.001,
|
||||
"num_workers": 4,
|
||||
"valid_size": 0.2,
|
||||
"batch_size": 256,
|
||||
"train_ens": 1,
|
||||
"valid_ens": 1,
|
||||
"beta_type": 0.1, # 'Blundell','Standard',etc.
|
||||
# Use float for const value
|
||||
},
|
||||
#"data": "CIFAR10",
|
||||
"data": "MNIST",
|
||||
"stopping_crit": 1,
|
||||
"save": 1,
|
||||
"pickle_path": None,
|
||||
}
|
||||
|
||||
# CUDA settings
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
|
@ -80,8 +109,7 @@ def run(dataset, net_type):
|
|||
net = getModel(net_type, inputs, outputs).to(device)
|
||||
|
||||
ckpt_dir = f'checkpoints/{dataset}/frequentist'
|
||||
ckpt_name = f'checkpoints/{dataset}/frequentist/model\
|
||||
_{net_type}_{cfg["model"]["size"]}.pt'
|
||||
ckpt_name = f'checkpoints/{dataset}/frequentist/model_{net_type}_{cfg["model"]["size"]}'
|
||||
|
||||
if not os.path.exists(ckpt_dir):
|
||||
os.makedirs(ckpt_dir, exist_ok=True)
|
||||
|
@ -132,11 +160,17 @@ def run(dataset, net_type):
|
|||
|
||||
if sav == 1:
|
||||
# save model when finished
|
||||
if epoch == n_epochs:
|
||||
torch.save(net.state_dict(), ckpt_name)
|
||||
# if epoch == n_epochs:
|
||||
# torch.save(net.state_dict(), ckpt_name)
|
||||
torch.save({
|
||||
'epoch': epoch,
|
||||
'model_state_dict': net.state_dict(),
|
||||
'optimizer_state_dict': optimizer.state_dict(),
|
||||
'loss': train_loss,
|
||||
}, ckpt_name + '_epoch_{}.pt'.format(epoch))
|
||||
|
||||
with open("freq_exp_data_"+str(cfg["model"]["size"])+".pkl", 'wb') as f:
|
||||
pickle.dump(train_data, f)
|
||||
# with open("freq_exp_data_"+str(cfg["model"]["size"])+".pkl", 'wb') as f:
|
||||
# pickle.dump(train_data, f)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -24,7 +24,7 @@ cfg = {
|
|||
},
|
||||
"n_epochs": 100,
|
||||
"sens": 1e-9,
|
||||
"energy_thrs": 10000,
|
||||
"energy_thrs": 100000,
|
||||
"acc_thrs": 0.99,
|
||||
"lr": 0.001,
|
||||
"num_workers": 4,
|
||||
|
|
Loading…
Reference in New Issue