from __future__ import print_function import os import data import torch # import pickle import metrics import numpy as np import torch.nn as nn from datetime import datetime from torch.optim import Adam, lr_scheduler from models.NonBayesianModels.LeNet import LeNet from models.NonBayesianModels.AlexNet import AlexNet from stopping_crit import earlyStopping, energyBound, accuracyBound from models.NonBayesianModels.ThreeConvThreeFC import ThreeConvThreeFC # with (open("configuration.pkl", "rb")) as file: # while True: # try: # cfg = pickle.load(file) # except EOFError: # break cfg = { "model": {"net_type": "lenet", "type": "freq", "size": 1, "layer_type": "lrt", "activation_type": "softplus", "priors": { 'prior_mu': 0, 'prior_sigma': 0.1, 'posterior_mu_initial': (0, 0.1), # (mean,std) normal_ 'posterior_rho_initial': (-5, 0.1), # (mean,std) normal_ }, "n_epochs": 100, "sens": 1e-9, "energy_thrs": 100000, "acc_thrs": 0.99, "lr": 0.001, "num_workers": 4, "valid_size": 0.2, "batch_size": 256, "train_ens": 1, "valid_ens": 1, "beta_type": 0.1, # 'Blundell','Standard',etc. # Use float for const value }, #"data": "CIFAR10", "data": "MNIST", "stopping_crit": 1, "save": 1, "pickle_path": None, } # CUDA settings device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def getModel(net_type, inputs, outputs, wide=cfg["model"]["size"]): if (net_type == 'lenet'): return LeNet(outputs, inputs, wide) elif (net_type == 'alexnet'): return AlexNet(outputs, inputs) elif (net_type == '3conv3fc'): return ThreeConvThreeFC(outputs, inputs) else: raise ValueError('Network should be either [LeNet / AlexNet / \ 3Conv3FC') def train_model(net, optimizer, criterion, train_loader): train_loss = 0.0 net.train() accs = [] for datas, target in train_loader: data, target = datas.to(device), target.to(device) optimizer.zero_grad() output = net(data) loss = criterion(output, target) loss.backward() optimizer.step() train_loss += loss.item()*data.size(0) accs.append(metrics.acc(output.detach(), target)) return train_loss, np.mean(accs) def validate_model(net, criterion, valid_loader): valid_loss = 0.0 net.eval() accs = [] for datas, target in valid_loader: data, target = datas.to(device), target.to(device) output = net(data) loss = criterion(output, target) valid_loss += loss.item()*data.size(0) accs.append(metrics.acc(output.detach(), target)) return valid_loss, np.mean(accs) def run(dataset, net_type): # Hyper Parameter settings n_epochs = cfg["model"]["n_epochs"] lr = cfg["model"]["lr"] num_workers = cfg["model"]["num_workers"] valid_size = cfg["model"]["valid_size"] batch_size = cfg["model"]["batch_size"] trainset, testset, inputs, outputs = data.getDataset(dataset) train_loader, valid_loader, test_loader = data.getDataloader( trainset, testset, valid_size, batch_size, num_workers) net = getModel(net_type, inputs, outputs).to(device) ckpt_dir = f'checkpoints/{dataset}/frequentist' ckpt_name = f'checkpoints/{dataset}/frequentist/model_{net_type}_{cfg["model"]["size"]}' if not os.path.exists(ckpt_dir): os.makedirs(ckpt_dir, exist_ok=True) stp = cfg["stopping_crit"] sav = cfg["save"] criterion = nn.CrossEntropyLoss() optimizer = Adam(net.parameters(), lr=lr) lr_sched = lr_scheduler.ReduceLROnPlateau(optimizer, patience=6, verbose=True) # valid_loss_min = np.Inf # if stp == 2: early_stop = [] train_data = [] for epoch in range(1, n_epochs+1): train_loss, train_acc = train_model(net, optimizer, criterion, train_loader) valid_loss, valid_acc = validate_model(net, criterion, valid_loader) lr_sched.step(valid_loss) train_loss = train_loss/len(train_loader.dataset) valid_loss = valid_loss/len(valid_loader.dataset) train_data.append([epoch, train_loss, train_acc, valid_loss, valid_acc]) print('Epoch: {} \tTraining Loss: {: .4f} \tTraining Accuracy: {: .4f}\ \tValidation Loss: {: .4f} \tValidation Accuracy: {: .4f}\ '.format(epoch, train_loss, train_acc, valid_loss, valid_acc)) if stp == 2: # print('Using early stopping') if earlyStopping(early_stop, valid_acc, epoch, cfg["model"]["sens"]) == 1: break elif stp == 3: # print('Using energy bound') if energyBound(cfg["model"]["energy_thrs"]) == 1: break elif stp == 4: # print('Using accuracy bound') if accuracyBound(train_acc, cfg["model"]["acc_thrs"]) == 1: break else: print('Training for {} epochs'.format(cfg["model"]["n_epochs"])) if sav == 1: # save model when finished # if epoch == n_epochs: # torch.save(net.state_dict(), ckpt_name) torch.save({ 'epoch': epoch, 'model_state_dict': net.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': train_loss, }, ckpt_name + '_epoch_{}.pt'.format(epoch)) # with open("freq_exp_data_"+str(cfg["model"]["size"])+".pkl", 'wb') as f: # pickle.dump(train_data, f) if __name__ == '__main__': now = datetime.now() current_time = now.strftime("%H:%M:%S") print("Initial Time =", current_time) print("Using frequentist model of size: {}".format(cfg["model"]["size"])) run(cfg["data"], cfg["model"]["net_type"]) now = datetime.now() current_time = now.strftime("%H:%M:%S") print("Final Time =", current_time)