import numpy as np import torch.nn.functional as F from torch import nn import torch class ELBO(nn.Module): def __init__(self, train_size): super(ELBO, self).__init__() self.train_size = train_size def forward(self, input, target, kl, beta): assert not target.requires_grad return F.nll_loss(input, target, reduction='mean') * self.train_size + beta * kl # def lr_linear(epoch_num, decay_start, total_epochs, start_value): # if epoch_num < decay_start: # return start_value # return start_value*float(total_epochs-epoch_num)/float(total_epochs-decay_start) def acc(outputs, targets): return np.mean(outputs.cpu().numpy().argmax(axis=1) == targets.data.cpu().numpy()) def calculate_kl(mu_q, sig_q, mu_p, sig_p): kl = 0.5 * (2 * torch.log(sig_p / sig_q) - 1 + (sig_q / sig_p).pow(2) + ((mu_p - mu_q) / sig_p).pow(2)).sum() return kl def get_beta(batch_idx, m, beta_type, epoch, num_epochs): if type(beta_type) is float: return beta_type if beta_type == "Blundell": beta = 2 ** (m - (batch_idx + 1)) / (2 ** m - 1) elif beta_type == "Soenderby": if epoch is None or num_epochs is None: raise ValueError('Soenderby method requires both epoch and num_epochs to be passed.') beta = min(epoch / (num_epochs // 4), 1) elif beta_type == "Standard": beta = 1 / m else: beta = 0 return beta