import torch.nn as nn import torch.nn.functional as F import numpy as np def conv_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: #nn.init.xavier_uniform(m.weight, gain=np.sqrt(2)) nn.init.normal_(m.weight, mean=0, std=1) nn.init.constant(m.bias, 0) class AlexNet(nn.Module): def __init__(self, num_classes, inputs=3): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(inputs, 64, kernel_size=11, stride=4, padding=5), nn.ReLU(inplace=True), nn.Dropout(p=0.5), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Dropout(p=0.5), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Dropout(p=0.5), nn.MaxPool2d(kernel_size=2, stride=2), ) self.classifier = nn.Linear(256, num_classes) def forward(self, x): x = self.features(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x