bayesiancnn/arguments.py

61 lines
1.7 KiB
Python
Executable File

import argparse
from argparse import ArgumentParser
# Construct an argument parser
all_args = argparse.ArgumentParser()
def makeArguments(arguments: ArgumentParser) -> dict:
"""Training arguments to be passed to the model"""
all_args.add_argument(
"-b",
"--Bayesian",
action="store",
dest="b",
type=int,
choices=range(1, 8),
help="Bayesian model of size x",
)
all_args.add_argument(
"-f",
"--Frequentist",
action="store",
dest="f",
type=int,
choices=range(1, 8),
help="Frequentist model of size x",
)
all_args.add_argument(
"-E", "--EarlyStopping", action="store_true", help="Early Stopping criteria"
)
all_args.add_argument(
"-e", "--EnergyBound", action="store_true", help="Energy Bound criteria"
)
all_args.add_argument(
"-a", "--AccuracyBound", action="store_true", help="Accuracy Bound criteria"
)
all_args.add_argument(
"-x",
"--EfficiencyStopping",
action="store_true",
help="Efficiency Stopping criteria",
)
all_args.add_argument("-s", "--Save", action="store_true", help="Save model")
all_args.add_argument(
"--net_type", default="lenet", type=str, help="model = [lenet/AlexNet/3Conv3FC]"
)
all_args.add_argument(
"-N",
"--noise_type",
default=None,
type=str,
help="noise = [Gaussian(m,s)/Raleigh(a,b)/Erlang(a,b)/Exponential(a)/Uniform(a,b)/Impulse(a)]",
)
all_args.add_argument(
"--dataset",
default="CIFAR10",
type=str,
help="dataset = [MNIST/CIFAR10/CIFAR100]",
)
return vars(all_args.parse_args())