bayesiancnn/main_bayesian.py

231 lines
7.4 KiB
Python
Executable File

from __future__ import print_function
import os
import pickle
from datetime import datetime
import numpy as np
import torch
from torch.nn import functional as F
from torch.optim import Adam, lr_scheduler
import data
import metrics
import utils
from models.BayesianModels.Bayesian3Conv3FC import BBB3Conv3FC
from models.BayesianModels.BayesianAlexNet import BBBAlexNet
from models.BayesianModels.BayesianLeNet import BBBLeNet
from stopping_crit import accuracy_bound, e_stop, efficiency_stop, energy_bound
with open("configuration.pkl", "rb") as file:
while True:
try:
cfg = pickle.load(file)
except EOFError:
break
# CUDA settings
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def getModel(net_type, inputs, outputs, priors, layer_type, activation_type):
if net_type == "lenet":
return BBBLeNet(
outputs,
inputs,
priors,
layer_type,
activation_type,
wide=cfg["model"]["size"],
)
elif net_type == "alexnet":
return BBBAlexNet(outputs, inputs, priors, layer_type, activation_type)
elif net_type == "3conv3fc":
return BBB3Conv3FC(outputs, inputs, priors, layer_type, activation_type)
else:
raise ValueError(
"Network should be either [LeNet / AlexNet\
/ 3Conv3FC"
)
def train_model(
net,
optimizer,
criterion,
trainloader,
num_ens=1,
beta_type=0.1,
epoch=None,
num_epochs=None,
):
net.train()
training_loss = 0.0
accs = []
kl_list = []
for i, (inputs, labels) in enumerate(trainloader, 1):
optimizer.zero_grad()
inputs, labels = inputs.to(device), labels.to(device)
outputs = torch.zeros(inputs.shape[0], net.num_classes, num_ens).to(device)
kl = 0.0
for j in range(num_ens):
net_out, _kl = net(inputs)
kl += _kl
outputs[:, :, j] = F.log_softmax(net_out, dim=1)
kl = kl / num_ens
kl_list.append(kl.item())
log_outputs = utils.logmeanexp(outputs, dim=2)
beta = metrics.get_beta(i - 1, len(trainloader), beta_type, epoch, num_epochs)
loss = criterion(log_outputs, labels, kl, beta)
loss.backward()
optimizer.step()
accs.append(metrics.acc(log_outputs.data, labels))
training_loss += loss.cpu().data.numpy()
return training_loss / len(trainloader), np.mean(accs), np.mean(kl_list)
def validate_model(net, criterion, validloader, num_ens=1, beta_type=0.1, epoch=None, num_epochs=None):
"""Calculate ensemble accuracy and NLL Loss"""
net.train()
valid_loss = 0.0
accs = []
for i, (inputs, labels) in enumerate(validloader):
inputs, labels = inputs.to(device), labels.to(device)
outputs = torch.zeros(inputs.shape[0], net.num_classes, num_ens).to(device)
kl = 0.0
for j in range(num_ens):
net_out, _kl = net(inputs)
kl += _kl
outputs[:, :, j] = F.log_softmax(net_out, dim=1).data
log_outputs = utils.logmeanexp(outputs, dim=2)
beta = metrics.get_beta(i - 1, len(validloader), beta_type, epoch, num_epochs)
valid_loss += criterion(log_outputs, labels, kl, beta).item()
accs.append(metrics.acc(log_outputs, labels))
return valid_loss / len(validloader), np.mean(accs)
def run(dataset, net_type):
# Noise applied to dataset
noise_type = cfg["noise_type"]
mean = 0.5
std = 0.5
# Hyper Parameter settings
layer_type = cfg["model"]["layer_type"]
activation_type = cfg["model"]["activation_type"]
priors = cfg["model"]["priors"]
train_ens = cfg["model"]["train_ens"]
valid_ens = cfg["model"]["valid_ens"]
n_epochs = cfg["model"]["n_epochs"]
lr_start = cfg["model"]["lr"]
num_workers = cfg["model"]["num_workers"]
valid_size = cfg["model"]["valid_size"]
batch_size = cfg["model"]["batch_size"]
beta_type = cfg["model"]["beta_type"]
trainset, testset, inputs, outputs = data.getDataset(dataset, noise_type, mean=mean, std=std)
train_loader, valid_loader, test_loader = data.getDataloader(
trainset, testset, valid_size, batch_size, num_workers
)
net = getModel(net_type, inputs, outputs, priors, layer_type, activation_type).to(device)
ckpt_dir = f"checkpoints/{dataset}/bayesian"
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir, exist_ok=True)
stp = cfg["stopping_crit"]
sav = cfg["save"]
criterion = metrics.ELBO(len(trainset)).to(device)
optimizer = Adam(net.parameters(), lr=lr_start)
lr_sched = lr_scheduler.ReduceLROnPlateau(optimizer, patience=6, verbose=True)
# valid_loss_max = np.Inf
# if stp == 2:
early_stop = []
train_data = []
for epoch in range(n_epochs): # loop over the dataset multiple times
train_loss, train_acc, train_kl = train_model(
net,
optimizer,
criterion,
train_loader,
num_ens=train_ens,
beta_type=beta_type,
epoch=epoch,
num_epochs=n_epochs,
)
valid_loss, valid_acc = validate_model(
net,
criterion,
valid_loader,
num_ens=valid_ens,
beta_type=beta_type,
epoch=epoch,
num_epochs=n_epochs,
)
lr_sched.step(valid_loss)
train_data.append([epoch, train_loss, train_acc, valid_loss, valid_acc])
print(
"Epoch: {} \tTraining Loss: {:.4f} \tTraining Accuracy:\
{:.4f} \tValidation Loss: {:.4f} \tValidation Accuracy:\
{:.4f} \ttrain_kl_div: {:.4f}".format(
epoch, train_loss, train_acc, valid_loss, valid_acc, train_kl
)
)
ckpt_name = f'checkpoints/{dataset}/bayesian/model_{net_type}_{layer_type}_{activation_type}_{cfg["model"]["size"]}_epoch_{epoch}_noise_{noise_type}.pt'
if sav == 1:
torch.save(net.state_dict(), ckpt_name)
if stp == 2:
# print("Using early stopping")
if e_stop(early_stop, valid_acc, epoch + 1, 2, cfg["model"]["sens"]) == 1:
break
elif stp == 3:
# print("Using energy bound")
if energy_bound(cfg["model"]["energy_thrs"]) == 1:
break
elif stp == 4:
if dataset == "MNIST":
# print("Using accuracy bound")
if accuracy_bound(train_acc, 0.99) == 1:
break
else:
# print("Using accuracy bound")
if accuracy_bound(train_acc, 0.50) == 1:
break
elif stp == 5:
# print("Using efficiency stoping")
if efficiency_stop(net, train_acc, batch_size, 0.002) == 1:
break
else:
print(f"Training for {cfg['model']['n_epochs']} epochs")
with open("bayes_exp_data_" + str(cfg["model"]["size"]) + f"_{dataset}" + ".pkl", "wb") as f:
pickle.dump(train_data, f)
if __name__ == "__main__":
now = datetime.now()
current_time = now.strftime("%H:%M:%S")
print("Initial Time =", current_time)
print(f"Using bayesian model of size: {cfg["model"]["size"]}")
run(cfg["data"], cfg["model"]["net_type"])
now = datetime.now()
current_time = now.strftime("%H:%M:%S")
print("Final Time =", current_time)