bayesiancnn/layers/BBB_LRT/BBBConv.py

87 lines
3.0 KiB
Python
Executable File

import sys
sys.path.append("..")
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Parameter
import utils
from metrics import calculate_kl as KL_DIV
from ..misc import ModuleWrapper
class BBBConv2d(ModuleWrapper):
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, bias=True, priors=None):
super(BBBConv2d, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = (kernel_size, kernel_size)
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = 1
self.use_bias = bias
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
if priors is None:
priors = {
'prior_mu': 0,
'prior_sigma': 0.1,
'posterior_mu_initial': (0, 0.1),
'posterior_rho_initial': (-3, 0.1),
}
self.prior_mu = priors['prior_mu']
self.prior_sigma = priors['prior_sigma']
self.posterior_mu_initial = priors['posterior_mu_initial']
self.posterior_rho_initial = priors['posterior_rho_initial']
self.W_mu = Parameter(torch.Tensor(out_channels, in_channels, *self.kernel_size))
self.W_rho = Parameter(torch.Tensor(out_channels, in_channels, *self.kernel_size))
if self.use_bias:
self.bias_mu = Parameter(torch.Tensor(out_channels))
self.bias_rho = Parameter(torch.Tensor(out_channels))
else:
self.register_parameter('bias_mu', None)
self.register_parameter('bias_rho', None)
self.reset_parameters()
def reset_parameters(self):
self.W_mu.data.normal_(*self.posterior_mu_initial)
self.W_rho.data.normal_(*self.posterior_rho_initial)
if self.use_bias:
self.bias_mu.data.normal_(*self.posterior_mu_initial)
self.bias_rho.data.normal_(*self.posterior_rho_initial)
def forward(self, x, sample=True):
self.W_sigma = torch.log1p(torch.exp(self.W_rho))
if self.use_bias:
self.bias_sigma = torch.log1p(torch.exp(self.bias_rho))
bias_var = self.bias_sigma ** 2
else:
self.bias_sigma = bias_var = None
act_mu = F.conv2d(
x, self.W_mu, self.bias_mu, self.stride, self.padding, self.dilation, self.groups)
act_var = 1e-16 + F.conv2d(
x ** 2, self.W_sigma ** 2, bias_var, self.stride, self.padding, self.dilation, self.groups)
act_std = torch.sqrt(act_var)
if self.training or sample:
eps = torch.empty(act_mu.size()).normal_(0, 1).to(self.device)
return act_mu + act_std * eps
else:
return act_mu
def kl_loss(self):
kl = KL_DIV(self.prior_mu, self.prior_sigma, self.W_mu, self.W_sigma)
if self.use_bias:
kl += KL_DIV(self.prior_mu, self.prior_sigma, self.bias_mu, self.bias_sigma)
return kl