47 lines
1.4 KiB
Python
Executable File
47 lines
1.4 KiB
Python
Executable File
import numpy as np
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
import torch
|
|
|
|
|
|
class ELBO(nn.Module):
|
|
def __init__(self, train_size):
|
|
super(ELBO, self).__init__()
|
|
self.train_size = train_size
|
|
|
|
def forward(self, input, target, kl, beta):
|
|
assert not target.requires_grad
|
|
return F.nll_loss(input, target, reduction='mean') * self.train_size + beta * kl
|
|
|
|
|
|
# def lr_linear(epoch_num, decay_start, total_epochs, start_value):
|
|
# if epoch_num < decay_start:
|
|
# return start_value
|
|
# return start_value*float(total_epochs-epoch_num)/float(total_epochs-decay_start)
|
|
|
|
|
|
def acc(outputs, targets):
|
|
return np.mean(outputs.cpu().numpy().argmax(axis=1) == targets.data.cpu().numpy())
|
|
|
|
|
|
def calculate_kl(mu_q, sig_q, mu_p, sig_p):
|
|
kl = 0.5 * (2 * torch.log(sig_p / sig_q) - 1 + (sig_q / sig_p).pow(2) + ((mu_p - mu_q) / sig_p).pow(2)).sum()
|
|
return kl
|
|
|
|
|
|
def get_beta(batch_idx, m, beta_type, epoch, num_epochs):
|
|
if type(beta_type) is float:
|
|
return beta_type
|
|
|
|
if beta_type == "Blundell":
|
|
beta = 2 ** (m - (batch_idx + 1)) / (2 ** m - 1)
|
|
elif beta_type == "Soenderby":
|
|
if epoch is None or num_epochs is None:
|
|
raise ValueError('Soenderby method requires both epoch and num_epochs to be passed.')
|
|
beta = min(epoch / (num_epochs // 4), 1)
|
|
elif beta_type == "Standard":
|
|
beta = 1 / m
|
|
else:
|
|
beta = 0
|
|
return beta
|