v0.2
This commit is contained in:
parent
5aef60aa91
commit
64698013ef
17
main.py
17
main.py
|
@ -1,19 +1,8 @@
|
||||||
|
|
||||||
from retEmoDict import emoDic
|
from newsTrain import trainVect, flagger
|
||||||
from newsTrain import classifyNews
|
|
||||||
from clust import clustering
|
|
||||||
|
|
||||||
|
|
||||||
temp = clustering()
|
sert = trainVect()
|
||||||
|
|
||||||
emoDict = emoDic()
|
for i in sert:
|
||||||
|
|
||||||
rest = []
|
|
||||||
|
|
||||||
for i in temp:
|
|
||||||
rest.append(classifyNews(i, emoDict))
|
|
||||||
|
|
||||||
|
|
||||||
for i in rest:
|
|
||||||
print(i)
|
print(i)
|
||||||
|
|
||||||
|
|
272
newsTrain.py
272
newsTrain.py
|
@ -1,6 +1,10 @@
|
||||||
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
||||||
|
from stopWords import stopWrdList
|
||||||
|
from retEmoDict import emoDic
|
||||||
|
from clust import clustering
|
||||||
|
import operator
|
||||||
|
|
||||||
|
def trainPre(word_array, dict):
|
||||||
def classifyNews(word_array, dict):
|
|
||||||
|
|
||||||
default = 'NA'
|
default = 'NA'
|
||||||
alegria = []
|
alegria = []
|
||||||
|
@ -72,6 +76,268 @@ def classifyNews(word_array, dict):
|
||||||
if len(flag) == 0:
|
if len(flag) == 0:
|
||||||
flag = ['NEU']
|
flag = ['NEU']
|
||||||
|
|
||||||
return [('Positive:', pos), ('Negative:', neg), flag, vect]
|
return [pos, neg, flag, vect]
|
||||||
|
|
||||||
|
def corporizer():
|
||||||
|
emoDict = emoDic()
|
||||||
|
clust = clustering()
|
||||||
|
|
||||||
|
temp = []
|
||||||
|
for i in clust:
|
||||||
|
temp.append(trainPre(i, emoDict))
|
||||||
|
|
||||||
|
tempy = []
|
||||||
|
for vect in temp:
|
||||||
|
tempy.append(' '.join(vect[3]))
|
||||||
|
|
||||||
|
return tempy
|
||||||
|
|
||||||
|
|
||||||
|
def flagger():
|
||||||
|
|
||||||
|
emoDict = emoDic()
|
||||||
|
clust = clustering()
|
||||||
|
|
||||||
|
temp = []
|
||||||
|
for i in clust:
|
||||||
|
temp.append(trainPre(i, emoDict))
|
||||||
|
|
||||||
|
flag = []
|
||||||
|
for j in temp:
|
||||||
|
#print(j[2])
|
||||||
|
if j[2] == (['CONTRA', 'NEU', 'PRI'] or ['NEU', 'CONTRA', 'PRI'] or ['NEU', 'PRI', 'CONTRA'] or
|
||||||
|
['PRI', 'NEU', 'CONTRA'] or ['CONTRA', 'PRI', 'NEU'] or ['PRI', 'CONTRA', 'NEU']):
|
||||||
|
flag.append(1)
|
||||||
|
|
||||||
|
#else:
|
||||||
|
# flag.append(0)
|
||||||
|
|
||||||
|
if j[2] == (['CONTRA', 'PRI'] or ['PRI', 'CONTRA']):
|
||||||
|
flag.append(1)
|
||||||
|
|
||||||
|
#else:
|
||||||
|
# flag.append(6)
|
||||||
|
|
||||||
|
if j[2] == ['NEU']:
|
||||||
|
flag.append(1)
|
||||||
|
|
||||||
|
#else:
|
||||||
|
# flag.append(7)
|
||||||
|
|
||||||
|
if j[2] == (['PRI'] or ['NEU', 'PRI'] or ['PRI', 'NEU']):
|
||||||
|
flag.append(2)
|
||||||
|
|
||||||
|
#else:
|
||||||
|
# flag.append(8)
|
||||||
|
|
||||||
|
if j[2] == (['CONTRA'] or ['NEU', 'CONTRA'] or ['CONTRA', 'NEU']):
|
||||||
|
flag.append(3)
|
||||||
|
|
||||||
|
#else:
|
||||||
|
# flag.append(9)
|
||||||
|
|
||||||
|
|
||||||
|
index = []
|
||||||
|
for i in temp:
|
||||||
|
if i[0] == i[1]:
|
||||||
|
index.append(1)
|
||||||
|
|
||||||
|
if i[0] > i[1]:
|
||||||
|
index.append(2)
|
||||||
|
|
||||||
|
if i[0] < i[1]:
|
||||||
|
index.append(3)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
lenFlag = len(flag)
|
||||||
|
lenInde = len(index)
|
||||||
|
|
||||||
|
if lenFlag < lenInde:
|
||||||
|
for i in range(lenInde - lenFlag):
|
||||||
|
flag.append(1)
|
||||||
|
|
||||||
|
|
||||||
|
return (index, flag)
|
||||||
|
|
||||||
|
|
||||||
|
def operate_on_Narray(A, B, function):
|
||||||
|
try:
|
||||||
|
return [operate_on_Narray(a, b, function) for a, b in zip(A, B)]
|
||||||
|
except TypeError as e:
|
||||||
|
# Not iterable
|
||||||
|
return function(A, B)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def trainVect():
|
||||||
|
|
||||||
|
flag = flagger()
|
||||||
|
corpus = corporizer()
|
||||||
|
|
||||||
|
stop_words = stopWrdList()
|
||||||
|
|
||||||
|
vectorizer = TfidfVectorizer(strip_accents='ascii', analyzer='word', stop_words=stop_words)
|
||||||
|
|
||||||
|
X = vectorizer.fit_transform(corpus)
|
||||||
|
vector = X.toarray()
|
||||||
|
|
||||||
|
long = len(flag[0])
|
||||||
|
|
||||||
|
part_neu_ind = []
|
||||||
|
part_neg_ind = []
|
||||||
|
part_pos_ind = []
|
||||||
|
cont_neu_ind = []
|
||||||
|
cont_neg_ind = []
|
||||||
|
cont_pos_ind = []
|
||||||
|
neut_neu_ind = []
|
||||||
|
neut_neg_ind = []
|
||||||
|
neut_pos_ind = []
|
||||||
|
|
||||||
|
# flag 0 has emotion info, flag 1 has political party info
|
||||||
|
# 1 is neutral emo ; 2 is positive emo ; 3 is negative emo
|
||||||
|
# 1 is neutral ; 2 is pol; 3 is opposition
|
||||||
|
|
||||||
|
for s in range(long):
|
||||||
|
if flag[0][s] == 1 and flag[1][s] == 1:
|
||||||
|
neut_neu_ind.append(s)
|
||||||
|
|
||||||
|
if flag[0][s] == 1 and flag[1][s] == 2:
|
||||||
|
part_neu_ind.append(s)
|
||||||
|
|
||||||
|
if flag[0][s] == 1 and flag[1][s] == 3:
|
||||||
|
cont_neu_ind.append(s)
|
||||||
|
|
||||||
|
if flag[0][s] == 2 and flag[1][s] == 2:
|
||||||
|
part_pos_ind.append(s)
|
||||||
|
|
||||||
|
if flag[0][s] == 2 and flag[1][s] == 3:
|
||||||
|
cont_pos_ind.append(s)
|
||||||
|
|
||||||
|
if flag[0][s] == 2 and flag[1][s] == 1:
|
||||||
|
neut_pos_ind.append(s)
|
||||||
|
|
||||||
|
if flag[0][s] == 3 and flag[1][s] == 1:
|
||||||
|
neut_neg_ind.append(s)
|
||||||
|
|
||||||
|
if flag[0][s] == 3 and flag[1][s] == 2:
|
||||||
|
part_neg_ind.append(s)
|
||||||
|
|
||||||
|
if flag[0][s] == 3 and flag[1][s] == 3:
|
||||||
|
cont_neg_ind.append(s)
|
||||||
|
|
||||||
|
part_neu_vect = [vector[x] for x in part_neu_ind]
|
||||||
|
part_neg_vect = [vector[x] for x in part_neg_ind]
|
||||||
|
part_pos_vect = [vector[x] for x in part_pos_ind]
|
||||||
|
cont_neu_vect = [vector[x] for x in cont_neu_ind]
|
||||||
|
cont_neg_vect = [vector[x] for x in cont_neg_ind]
|
||||||
|
cont_pos_vect = [vector[x] for x in cont_pos_ind]
|
||||||
|
neut_neu_vect = [vector[x] for x in neut_neu_ind]
|
||||||
|
neut_neg_vect = [vector[x] for x in neut_neg_ind]
|
||||||
|
neut_pos_vect = [vector[x] for x in neut_pos_ind]
|
||||||
|
|
||||||
|
len1 = len(part_neu_vect)
|
||||||
|
if len1 != 0:
|
||||||
|
for a in range(len1):
|
||||||
|
tmp = part_neu_vect[0]
|
||||||
|
tmp = operate_on_Narray(part_neu_vect[0], tmp[a+1], lambda x, y: x + y)
|
||||||
|
|
||||||
|
tmp = operate_on_Narray(part_neu_vect[0], tmp[a+1], lambda x, y: x / len1)
|
||||||
|
|
||||||
|
part_neu_vect = list(tmp)
|
||||||
|
|
||||||
|
|
||||||
|
else:
|
||||||
|
part_neu_vect = []
|
||||||
|
|
||||||
|
len1 = len(part_neg_vect)
|
||||||
|
if len1 != 0:
|
||||||
|
for a in range(len1):
|
||||||
|
tmp = part_neg_vect[0]
|
||||||
|
tmp = operate_on_Narray(part_neg_vect[0], tmp[a + 1], lambda x, y: x + y)
|
||||||
|
|
||||||
|
tmp = operate_on_Narray(part_neg_vect[0], tmp[a + 1], lambda x, y: x / len1)
|
||||||
|
part_neg_vect = list(tmp)
|
||||||
|
|
||||||
|
else:
|
||||||
|
part_neg_vect = []
|
||||||
|
|
||||||
|
len1 = len(part_pos_vect)
|
||||||
|
if len1 != 0:
|
||||||
|
for a in range(len1):
|
||||||
|
tmp = part_pos_vect[0]
|
||||||
|
tmp = operate_on_Narray(part_pos_vect[0], tmp[a + 1], lambda x, y: x + y)
|
||||||
|
|
||||||
|
tmp = operate_on_Narray(part_pos_vect[0], tmp[a + 1], lambda x, y: x / len1)
|
||||||
|
part_pos_vect = list(tmp)
|
||||||
|
|
||||||
|
else:
|
||||||
|
part_pos_vect = []
|
||||||
|
|
||||||
|
len1 = len(cont_neu_vect)
|
||||||
|
if len1 != 0:
|
||||||
|
for a in range(len1):
|
||||||
|
tmp = cont_neu_vect[0]
|
||||||
|
tmp = operate_on_Narray(cont_neu_vect[0], tmp[a + 1], lambda x, y: x + y)
|
||||||
|
|
||||||
|
tmp = operate_on_Narray(cont_neu_vect[0], tmp[a + 1], lambda x, y: x / len1)
|
||||||
|
cont_neu_vect = list(tmp)
|
||||||
|
|
||||||
|
else:
|
||||||
|
cont_neu_vect = []
|
||||||
|
|
||||||
|
len1 = len(cont_neg_vect)
|
||||||
|
if len1 != 0:
|
||||||
|
for a in range(len1):
|
||||||
|
tmp = cont_neg_vect[0]
|
||||||
|
tmp = operate_on_Narray(cont_neg_vect[0], tmp[a + 1], lambda x, y: x + y)
|
||||||
|
|
||||||
|
tmp = operate_on_Narray(cont_neg_vect[0], tmp[a + 1], lambda x, y: x / len1)
|
||||||
|
cont_neg_vect = list(tmp)
|
||||||
|
|
||||||
|
else:
|
||||||
|
cont_neg_vect = []
|
||||||
|
|
||||||
|
len1 = len(cont_pos_vect)
|
||||||
|
if len1 != 0:
|
||||||
|
for a in range(len1):
|
||||||
|
tmp = cont_pos_vect[0]
|
||||||
|
tmp = operate_on_Narray(cont_pos_vect[0], tmp[a + 1], lambda x, y: x + y)
|
||||||
|
|
||||||
|
tmp = operate_on_Narray(cont_pos_vect[0], tmp[a + 1], lambda x, y: x / len1)
|
||||||
|
cont_pos_vect = list(tmp)
|
||||||
|
|
||||||
|
else:
|
||||||
|
cont_pos_vect = []
|
||||||
|
|
||||||
|
len1 = len(neut_neg_vect)
|
||||||
|
if len1 != 0:
|
||||||
|
for a in range(len1):
|
||||||
|
tmp = neut_neg_vect[0]
|
||||||
|
tmp = operate_on_Narray(neut_neg_vect[0], tmp[a + 1], lambda x, y: x + y)
|
||||||
|
|
||||||
|
tmp = operate_on_Narray(neut_neg_vect[0], tmp[a + 1], lambda x, y: x / len1)
|
||||||
|
|
||||||
|
neut_neg_vect = list(tmp)
|
||||||
|
|
||||||
|
else:
|
||||||
|
neut_neg_vect = []
|
||||||
|
|
||||||
|
len1 = len(neut_pos_vect)
|
||||||
|
if len1 != 0:
|
||||||
|
for a in range(len1):
|
||||||
|
tmp = neut_pos_vect[0]
|
||||||
|
tmp = operate_on_Narray(neut_pos_vect[0], tmp[a + 1], lambda x, y: x + y)
|
||||||
|
|
||||||
|
tmp = operate_on_Narray(neut_pos_vect[0], tmp[a + 1], lambda x, y: x / len1)
|
||||||
|
|
||||||
|
neut_pos_vect = list(tmp)
|
||||||
|
|
||||||
|
else:
|
||||||
|
neut_pos_vect = []
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
return [part_neu_vect, part_neg_vect, part_pos_vect, cont_neu_vect, cont_neg_vect, cont_pos_vect, neut_neu_vect, neut_neg_vect, neut_pos_vect]
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue