small change to the model

This commit is contained in:
Eddie 2017-11-07 09:04:18 -06:00
parent e286326c9a
commit f9830e61d2
2 changed files with 9 additions and 32 deletions

View File

@ -1,10 +1,7 @@
from infBack import get_vect as gv
from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn import cluster
from matplotlib import pyplot
import numpy as np
def stopWrdList():
sw = open('stop.words')
@ -13,6 +10,8 @@ def stopWrdList():
return [l.strip('\n\r') for l in prue[0]]
voc = ["ine", "pri", "pan", "prd", "pt", "pvem", "verde", "movimiento", "ciudadano", "panal", "alianza", "morena", "partido", "encuentro", "social", "electoral"]
stop_words = stopWrdList()
dataVect = gv()
@ -21,36 +20,12 @@ dataVect = np.array(dataVect)
corpus = dataVect[:, 2]
vectorizer = CountVectorizer(stop_words=stop_words)
transformer = TfidfTransformer(smooth_idf=False)
vectorizer = TfidfVectorizer(strip_accents='ascii', analyzer='word', stop_words=stop_words, vocabulary=voc)
X = vectorizer.fit_transform(corpus)
del dataVect, corpus, stop_words
del dataVect, stop_words, vectorizer # , corpus
J = X.toarray()
tf_idf = transformer.fit_transform(J)
tf_idf_matrix = tf_idf.toarray()
k = 2
kmeans = cluster.KMeans(n_clusters=k)
kmeans.fit(J)
labels = kmeans.labels_
centroids = kmeans.cluster_centers_
for i in range(k):
# select only data observations with cluster label == i
ds = J[np.where(labels == i)]
# plot the data observations
pyplot.plot(ds[:, 0], ds[:, 1], 'o')
# plot the centroids
lines = pyplot.plot(centroids[i, 0], centroids[i, 1], 'kx')
# make the centroid x's bigger
pyplot.setp(lines, ms=15.0)
pyplot.setp(lines, mew=2.0)
pyplot.show()
print(X.toarray())
print(J)

View File

@ -27,6 +27,8 @@ def get_vect():
return impDat
# print(len(get_vect()))
# this section of the code show how to extract relevant data from the dictionaries
"""