proNlp1/clust.py

57 lines
1.3 KiB
Python

from infBack import get_vect as gv
import numpy as np
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn import cluster
from matplotlib import pyplot
import numpy as np
def stopWrdList():
sw = open('stop.words')
prue = []
prue.append(sw.readlines())
return [l.strip('\n\r') for l in prue[0]]
stop_words = stopWrdList()
dataVect = gv()
dataVect = np.array(dataVect)
corpus = dataVect[:, 2]
vectorizer = CountVectorizer(stop_words=stop_words)
transformer = TfidfTransformer(smooth_idf=False)
X = vectorizer.fit_transform(corpus)
del dataVect, corpus, stop_words
J = X.toarray()
tf_idf = transformer.fit_transform(J)
tf_idf_matrix = tf_idf.toarray()
k = 2
kmeans = cluster.KMeans(n_clusters=k)
kmeans.fit(J)
labels = kmeans.labels_
centroids = kmeans.cluster_centers_
for i in range(k):
# select only data observations with cluster label == i
ds = J[np.where(labels == i)]
# plot the data observations
pyplot.plot(ds[:,0],ds[:,1],'o')
# plot the centroids
lines = pyplot.plot(centroids[i, 0], centroids[i, 1], 'kx')
# make the centroid x's bigger
pyplot.setp(lines, ms=15.0)
pyplot.setp(lines, mew=2.0)
pyplot.show()
print(X.toarray())