pytorch-stuff/Visualization.ipynb

331 lines
44 KiB
Plaintext
Raw Normal View History

2020-04-14 17:37:47 +00:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"x = np.arange(0,10)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"y = x**2"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'Y label')"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEWCAYAAABi5jCmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAe2ElEQVR4nO3dd5yU5bn/8c9Fl6KCghoQUKKgwQYbVOwURbFERIMx2MXkaBRLPHjUFI2JSdRgiQWxHTVRgkSJgiE2IpEfuiAqiAS78qOsGgSUvtf54x5kd90yCzvP/czM9/16zWunPOt895HZa+/nbubuiIiIbNQodgAREUkXFQYREalEhUFERCpRYRARkUpUGEREpBIVBhERqUSFQUREKmkSO4BITGa2ssLDlsAaYEPm8fnAbsC3gf8B3qpwbCvgK2DjRKCjgXOAT9z96mrex6scD3Ctu/+uAX4MkQalwiBFzd1bb7xvZh8A57r7sxWe+0XmuI+Aisc6sI+7v1PhuXPqeLtKx4uklS4liYhIJSoMIiJSiQqDSHJmmdmyCrejYgcSqY76GESS00t9DJIP1GIQEZFK1GIQaViNzaxFhcfl7r42WhqRzaAWg0jDGgWsqnB7vsJrr5vZygq30VESitTBtFGPiIhUpBaDiIhUkrPCYGb3mdlSM5tT4bl2ZvYPM1uQ+do2V+8vIiKbJ5cthgeAQVWeGwU85+67Ac9lHouISIrktI/BzLoCT7l7z8zj+cDh7r7IzHYCXnT37jkLICIi9Zb0cNUd3H1R5v5iYIeaDjSzEcAIgFatWvXu0aNHAvFEJC+sWwdz5sA228Cuu8ZOk1ozZ8781N3b1/f7os1jcHfPrFBZ0+tjgDEAJSUlXlpamlg2EUm5886DefOgtFSFoRZm9uHmfF/So5KWZC4hkfm6NOH3F5F8N3cu3HcfXHCBikKOJF0YJgJnZO6fATyZ8PuLSL674gpo0wau/sZ+SNJAcnYpycz+DBwObG9mnwA/B24AxmU2NPkQOCVX7y8iBWjDBthjDxg4ELbbLnaagpWzwuDup9bwUv9cvaeIFLjGjeHGG2OnKHia+Swi+eGZZ+DZZ+s+TraYVlcVkfRbvRp+9CNo1y6MRGqkv2lzSYVBRNLv9tvhww/h3ntVFBKgMywi6fb553D99XD00dBfXZRJUGEQkXS7/npYvhx++9vYSYqGCoOIpNvuu8Nll8Fee8VOUjTUxyAi6Xb++bETFB21GEQknWbOhHvugfXrYycpOioMIpI+7uHy0dVXw6pVsdMUHV1KEpH0eeopmDoV7rgjrIskiVKLQUTSZf36sFBe9+5w7rmx0xQltRhEJF3uvRfefhv++ldo2jR2mqKkFoOIpMuuu8I558AJJ8ROUrTUYhCRdBk4MNwkGrUYRCQdFi2Ca64Js5wlKhUGEUmHa64Jy16UlcVOUvRUGEQkvr/8JXQ6jxwJ3brFTlP0VBhEJK758+Hss+HAA+FXv4qdRlBhEJGY3OGss6BFCxg3Dpo1i51I0KgkEYnJDO6/H5YuhU6dYqeRDLUYRCSOuXNDi6F7dzjkkNhppAIVBhFJ3quvQq9eMHp07CRSDRUGEUnWZ5/B0KGw005wxhmx00g11McgIskpL4fhw2HxYvjXv6Bdu9iJpBoqDCKSnOuvh8mT4c47oaQkdhqpgS4liUhyevWCCy/Udp0ppxaDiOTehg3QuDEMHhxukmpqMYhIbq1dC4cdBrfeGjuJZEmFQURy6/LLQ0fzt74VO4lkSYVBRHLn0UfhttvC4nhDh8ZOI1lSYRCR3Jg3L+zZ3Lcv/O53sdNIPagwiEhuTJ8OW28dFsfT3s15RYVBRHLj7LPDktodO8ZOIvWkwiAiDeu++8IkNoA2beJmkc2iwiAiDWfGDPjRj8LMZvfYaWQzRSkMZnaJmc01szlm9mczaxEjh4g0oE8/hZNPDpeOHnww7LUgeSnxwmBmHYGLgBJ37wk0BoYlnUNEGtCGDXDaabBkCYwfD23bxk4kWyDWkhhNgK3MbB3QEvj/kXKISEOYMAGmTIG774bevWOnkS2UeGFw94VmdiPwEbAKmOLuU6oeZ2YjgBEAnTt3TjakiNTP0KGhMAwYEDuJNIAYl5LaAicAuwDfAlqZ2Q+rHufuY9y9xN1L2rdvn3RMEcnGxx/Dv/8d+hMGDlS/QoGI0fk8AHjf3cvcfR0wAegbIYeIbIm1a0Nnc//+sGZN7DTSgGL0MXwEHGBmLQmXkvoDpRFyiMiWuOyyMDz18cehefPYaaQBJd5icPcZwHhgFvBmJsOYpHOIyBZ49FG4/Xa49FIYMiR2Gmlg5nkwCaWkpMRLS9WoEEmF+fPDyKP99oPnn9c6SClmZjPdvd57qGrms4jUT+fOYWvOxx5TUShQ2tpTRLLjDl99Ba1awU03xU4jOaQWg4hk57bbYN99YfHi2Ekkx1QYRKRu06eHUUh77AEdOsROIzmmwiAitSsrg1NOgZ13DovjNdKvjUKnPgYRqdmGDfCDH4TiMH26FscrEir9IlKz5ctDh/Ptt4fhqVIU1GIQkZq1bQtTp0LjxrGTSILUYhCRb/rwQzj11LD5TpMmWhyvyKgwiEhla9aExfEmTYJly2KnkQh0KUlEKrv0Unj11bD5zre/HTuNRKAWg4hs8sgjcMcd8NOfwoknxk4jkagwiEiwfj1cey0ceij8+tex00hEupQkIkGTJvDSS1BeHu5L0VKLQaTYucPDD4cWQ4cOsOOOsRNJZCoMIsXu1lth+PCw+Y4IKgwixe3ll+Hyy+GEE+C002KnkZRQYRApVkuXhsXxunSBBx7QJDb5mnqYRIrVOefAZ5+FxfG23TZ2GkkRFQaRYnXttaFvYd99YyeRlFFhECk2ixbBTjuF1VK1YqpUQ30MIsXkgw/gO9+B3/8+dhJJMRUGkWKxejUMHRomsA0ZEjuNpJguJYkUi5EjYeZMeOIJ6NYtdhpJMbUYRIrBQw/B3XfDf/93mLMgUgsVBpFi0KIFHHss/OpXsZNIHlBhEClk7uHrySfDxIlaHE+yosIgUqjcwzyFMWPCY81sliypMIgUqtGjw8Y7y5fHTiJ5RoVBpBBNm7ZpF7bLLoudRvKMCoNIoVmyJCyOt8sucP/9uoQk9aaeKJFCM2kSfPEFTJ4M22wTO43kIbUYRArNWWfBggWwzz6xk0ieUmEQKRTPPBP2bAb41rfiZpG8FqUwmNm2ZjbezN42s3lmdmCMHCIF47334NRTQ0fzxrkLIpspVh/DLcAz7j7UzJoBLSPlEMl/q1eHCWwQ9m1WZ7NsocQLg5ltAxwKnAng7muBtUnnECkYF10Es2aFmc277ho7jRSAGJeSdgHKgPvN7DUzG2tmraoeZGYjzKzUzErLysqSTymSD6ZMgXvugVGj4LjjYqeRAhGjMDQBegF3uvt+wJfAqKoHufsYdy9x95L27dsnnVEkPwwYAA8+CNddFzuJFJAYheET4BN3n5F5PJ5QKEQkW198AR99BI0awemna3E8aVCJFwZ3Xwx8bGbdM0/1B95KOodI3nKHM8+E/feHlStjp5ECFOvPjJ8Aj2RGJL0HnBUph0j+uemmsAvbTTdB69ax00gBilIY3H02UBLjvUXy2j//GTqaTzoJLrkkdhopUJr5LJIvFi+G738/DEm97z7NV5CcUWEQyRetWsGRR8Ljj8PWW8dOIwWsxktJZnZpbd/o7jc3fBwRqdaGDdCmTRiaKpJjtbUY2tRxE5EkTJwIvXvDwoWxk0iRqLHF4O6/TDKIiFTj3XfDPIVu3WC77WKnkSJRZx+Dme1uZs+Z2ZzM473N7OrcRxMpcqtWwdChYRLb+PHQokXsRFIksul8vge4ElgH4O5vAMNyGUpEgJ/8BGbPhoceCtt0iiQkm8LQ0t1fqfLc+lyEEZGMFSugtBSuugoGD46dRopMNhPcPjWzboADmNlQYFFOU4kUuzZtYPp0aNYsdhIpQtm0GC4A7gZ6mNlCYCTwo5ymEilWy5bByJGwfDlstRU0bhw7kRShOguDu7/n7gOA9kAPdz/Y3T/MfTS
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(x,y,'r--')\n",
"plt.xlim(0,4)\n",
"plt.ylim(0,10)\n",
"plt.title('TITLE')\n",
"plt.xlabel('X label')\n",
"plt.ylabel('Y label')"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"mat = np.arange(0,100).reshape(10,10)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],\n",
" [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],\n",
" [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],\n",
" [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],\n",
" [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],\n",
" [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],\n",
" [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],\n",
" [70, 71, 72, 73, 74, 75, 76, 77, 78, 79],\n",
" [80, 81, 82, 83, 84, 85, 86, 87, 88, 89],\n",
" [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]])"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"mat"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.image.AxesImage at 0x10ec20668>"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPUAAAD4CAYAAAA0L6C7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAALK0lEQVR4nO3dz4vc9R3H8ddrZ2Z33fVnf1AxG5pAxRKEEln8FfBgPGgVvfQQQaFecqkaRRDtxX9ARA8ihKgXgx5iDiKiFtRDKQTXxKLJKoRo88OICbRqY2qy2XcPO4U0cXa+O/v9+N15+3xAIDsz+eS9391nvjOzM584IgQgj5GmBwBQL6IGkiFqIBmiBpIhaiCZdolFRz0W45ossXQZdoEl619zYeEyyxZbeKiOw/Acg5NzX+vUmZM/uHCRqMc1qeu8sf6FR1r1rynJnfoPg1uFZm0X+ZJJheZVoXndLjBvsWNQ/7p/O7K953Xc/QaSIWogGaIGkiFqIBmiBpIhaiCZSlHbvtX2p7b3236s9FAABtc3atstSc9Kuk3SOkl3215XejAAg6lypr5W0v6IOBARpyS9IumusmMBGFSVqFdJOnTWx4e7l/0f25ttz9ieOa3v65oPwBLV9kRZRGyNiOmImO5orK5lASxRlaiPSFp91sdT3csArEBVon5f0pW219oelbRJ0mtlxwIwqL5voYmIOdv3S3pLUkvSCxGxt/hkAAZS6X1xEfGGpDcKzwKgBryiDEiGqIFkiBpIhqiBZIgaSKbIrnAeG1V7ak3t60aJzeakIhvDxUiZfy+jXWjdVpmdNKNVat761y12DAp8zeJ473Q5UwPJEDWQDFEDyRA1kAxRA8kQNZAMUQPJEDWQDFEDyRA1kAxRA8kQNZAMUQPJEDWQDFEDyRA1kAxRA8kQNZAMUQPJEDWQDFEDyRTZTXR+tK3/rPl57etGu9BujyP1rxuFNj6dH6JjIJU7DiXmnS82a/1rnvl778+fMzWQDFEDyRA1kAxRA8kQNZAMUQPJEDWQTN+oba+2/a7tfbb32t7yYwwGYDBVXnwyJ+mRiNht+yJJH9j+S0TsKzwbgAH0PVNHxNGI2N39/beSZiWtKj0YgMEs6TG17TWS1kva9QPXbbY9Y3vm9OkT9UwHYMkqR237QkmvSnooIr459/qI2BoR0xEx3elM1jkjgCWoFLXtjhaC3h4RO8uOBGA5qjz7bUnPS5qNiKfKjwRgOaqcqTdIulfSzbY/7P76feG5AAyo74+0IuKvksq82RZA7XhFGZAMUQPJEDWQDFEDyRTaeND699Ro/esO0cZw5TbcK7Rua9g2Hiyw5hDNOt/pfR1naiAZogaSIWogGaIGkiFqIBmiBpIhaiAZogaSIWogGaIGkiFqIBmiBpIhaiAZogaSIWogGaIGkiFqIBmiBpIhaiAZogaSIWogmTK7iXakE1fUvztlsZ00f+I7U0pStKLMunzNpJH6jy27iQI/IUQNJEPUQDJEDSRD1EAyRA0kQ9RAMpWjtt2yvcf26yUHArA8SzlTb5E0W2oQAPWoFLXtKUm3S9pWdhwAy1X1TP20pEclzfe6ge3Ntmdsz8x9d6KW4QAsXd+obd8h6auI+GCx20XE1oiYjojp9sRkbQMCWJoqZ+oNku60/bmkVyTdbPulolMBGFjfqCPi8YiYiog1kjZJeici7ik+GYCB8HNqIJklvZ86It6T9F6RSQDUgjM1kAxRA8kQNZAMUQPJEDWQTLHdRE9e3vMVpQOLArsySpIK7CJZandOudQxKLRuodOGW/V/f7nQ95dLHNtO78+fMzWQDFEDyRA1kAxRA8kQNZAMUQPJEDWQDFEDyRA1kAxRA8kQNZAMUQPJEDWQDFEDyRA1kAxRA8kQNZAMUQPJEDWQDFEDyRA1kEyR3UTdmVfr8u9qX3ek0G6PrQI7U5aatT1S/6yS1C5wDCSpVWreAuuWOrad1pna1zzemet5HWdqIBmiBpIhaiAZogaSIWogGaIGkiFqIJlKUdu+1PYO25/YnrV9Q+nBAAym6otPnpH0ZkT8wfaopImCMwFYhr5R275E0k2S/ihJEXFK0qmyYwEYVJW732slHZP0ou09trfZnjz3RrY3256xPXPmmxO1DwqgmipRtyVdI+m5iFgv6YSkx869UURsjYjpiJhuXXxe8wB+JFWiPizpcETs6n68QwuRA1iB+kYdEV9KOmT7qu5FGyXtKzoVgIFVffb7AUnbu898H5B0X7mRACxHpagj4kNJ04VnAVADXlEGJEPUQDJEDSRD1EAyRA0kU2Q30bH2nH7zq+O1r1tqt8fRkd47Mw5qmGaVpI7LzDvWKjNviePQcf27fkrSWIFZ97V7v/2CMzWQDFEDyRA1kAxRA8kQNZAMUQPJEDWQDFEDyRA1kAxRA8kQNZAMUQPJEDWQDFEDyRA1kAxRA8kQNZAMUQPJEDWQDFEDyRTZeHCy/b2u+9nnta87PnK69jUlaazAuqU2sRt3mWPQcZkNAkt9zUYLHN9Sx7bEuq+OnOx5HWdqIBmiBpIhaiAZogaSIWogGaIGkiFqIJlKUdt+2PZe2x/bftn2eOnBAAymb9S2V0l6UNJ0RFwtqSVpU+nBAAym6t3vtqQLbLclTUj6otxIAJajb9QRcUTSk5IOSjoq6euIePvc29nebHvG9sx3/+z9f+cCKKvK3e/LJN0laa2kKyRN2r7n3NtFxNaImI6I6YnLRuufFEAlVe5+3yLps4g4FhGnJe2UdGPZsQAMqkrUByVdb3vCtiVtlDRbdiwAg6rymHqXpB2Sdkv6qPtnthaeC8CAKr2fOiKekPRE4VkA1IBXlAHJEDWQDFEDyRA1kAxRA8kU2U304tZJ3XLRx7WvO15ox8uO52tfc7zYbqJRZN1OkVWlcZc5b3QKrDvmMkeh41bta160yKfPmRpIhqiBZIgaSIaogWSIGkiGqIFkiBpIhqiBZIgaSIaogWSIGkiGqIFkiBpIhqiBZIgaSIaogWSIGkiGqIFkiBpIhqiBZIgaSMYR9e9OafuYpH9UuOkvJB2vfYByhmneYZpVGq55V8Ksv46IX/7QFUWirsr2TERMNzbAEg3TvMM0qzRc8670Wbn7DSRD1EAyTUc9bP95/TDNO0yzSsM174qetdHH1ADq1/SZGkDNiBpIprGobd9q+1Pb+20/1tQc/dhebftd2/ts77W9pemZqrDdsr3H9utNz7IY25fa3mH7E9uztm9oeqbF2H64+33wse2XbY83PdO5GonadkvSs5Juk7RO0t221zUxSwVzkh6JiHWSrpf0pxU869m2SJpteogKnpH0ZkT8VtLvtIJntr1K0oOSpiPiakktSZuanep8TZ2pr5W0PyIORMQpSa9IuquhWRYVEUcjYnf3999q4ZtuVbNTLc72lKTbJW1repbF2L5E0k2SnpekiDgVEf9qdqq+2pIusN2WNCHpi4bnOU9TUa+SdOisjw9rhYciSbbXSFovaVezk/T1tKRHJc03PUgfayUdk/Ri96HCNtuTTQ/VS0QckfSkpIOSjkr6OiLebnaq8/FEWUW2L5T0qqSHIuKbpufpxfYdkr6KiA+anqWCtqRrJD0XEeslnZC0kp9fuUwL9yjXSrpC0qTte5qd6nxNRX1E0uqzPp7qXrYi2e5oIejtEbGz6Xn62CDpTtufa+Fhzc22X2p2pJ4OSzocEf+757NDC5GvVLdI+iwijkXEaUk7Jd3Y8EznaSrq9yVdaXut7VEtPNnwWkOzLMq2tfCYbzYinmp6nn4i4vGImIqINVo4ru9ExIo7m0hSRHwp6ZDtq7oXbZS0r8GR+jko6XrbE93vi41agU/stZv4SyNizvb9kt7SwjOIL0TE3iZmqWCDpHslfWT7w+5lf46INxqcKZMHJG3v/uN+QNJ9Dc/TU0Tssr1D0m4t/FRkj1bgS0Z5mSiQDE+UAckQNZAMUQPJEDWQDFEDyRA1kAxRA8n8F0oQbl5IDMiVAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.imshow(mat)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"mat = np.random.randint(0,1000,(10,10))"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.colorbar.Colorbar at 0x1103a5a20>"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAASoAAAD4CAYAAABbu6u/AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAUUklEQVR4nO3dfYxddZ3H8feHTh9ogZZnYVpolVpFNiwwwWo3rlpWEYglrg/dXRBYdFYFaZWoyB9L3LjraoyArouprQSlEdjaDQ3bBQwPISRrtQUCttWlKdBObaWlPNmnaWe++8c91Qnbufe0c07v79zzeSUnvffcc7/326bznd/ve37nXEUEZmYpO6LdCZiZteJCZWbJc6Eys+S5UJlZ8lyozCx5XWUEHT3xyBj3pomFx+0e+3LhMQE27Tm28JhvGbe98JgArwyMKSXui3uOLiXuUaP7S4l72ugdhcf83/XHFx4T4IjuvYXH3Lnldfpf2aWRxPjg+ybES9sHch276uk9D0TEhSP5vJEopVCNe9NEzv33ywqP+/W3/GfhMQH+cf2lhce8e8ZPC48JcN+OaaXE/d6z7y0l7rve9EIpcf+te0XhMT/wsSsLjwkw/l82Fx7zsU/fM+IYL20f4JcPnJbr2FGnPHvCiD9wBEopVGaWvgAGGWx3Grm4UJnVVBDsjXxTv3ZzoTKrMY+ozCxpQTBQkUvoXKjMamwQFyozS1gAAxUpVLkWfEq6UNJvJa2TdEPZSZnZ4TFI5NrareWIStIo4PvAXwF9wK8kLYuINWUnZ2blCWBvRXpUeUZU5wPrImJ9RPQDdwFzyk3LzMoWBAM5t3bL06PqBjYOed4HvPONB0nqBXoBxp5UzuUYZlaggIH216BcCrsoOSIWRERPRPSMnjS+qLBmVpLGyvR8W7vlGVFtAqYMeT4522dmlSYGGNF1zYdNnkL1K2C6pGk0CtRc4G9LzcrMStdopndIoYqIfZKuBR4ARgE/iojVpWdmZqVqrKPqkEIFEBHLgeUl52Jmh9lgp4yozKwzddyIysw6TyAGKnI3chcqsxrz1M/MkhaI/hjV7jRycaEyq6nGgs8aT/3693Tx/IYTC4876x3l/KOu31h8rj846bzCYwI89tmZpcR95y2/KSXugw+dW0rct+8q/t/39JWrCo8J8Oz9xee659WxhcRxM93MkhYhBqLGIyozq4ZBj6jMLGWNZno1SkA1sjSzwtW+mW5m1TDgdVRmljKvTDezShj0WT8zS1njomQXKjNLWCD2+hIaM0tZBF7waWapkxd8mlnaAo+ozKwC3Ew3s6QF8o3zzCxtja/LqkYJqEaWZlaC6nwBaTUmqGZWuKCxMj3P1oqkL0haLenXkn4qaZykaZJWSFon6W5JY7Jjx2bP12WvT20V34XKrMYGslFVq60ZSd3AdUBPRJxF44uK5wLfBG6OiDOAl4Grs7dcDbyc7b85O64pFyqzmopQYSMqGm2kIyV1AeOBzcD7gSXZ63cAl2aP52TPyV6fLalpNXSPyqymGs30kV9CExGbJH0b2ADsAh4EVgGvRMS+7LA+oDt73A1szN67T9KrwPHAtuE+wyMqs9pq3DM9zwacIGnlkK33j1GkY2mMkqYBpwITgAuLzLSUEdWonWLSqjGFx33z7n8oPCbAJ//i8cJjLn3+7MJjApy0c28pceef9FApcf/7xLNKibt3b/G/Y5//yVsLjwnw5t7Vhcf83Wu7Rxyj0UzPfdZvW0T0DPPaBcBzEbEVQNJSYBYwSVJXNqqaDGzKjt8ETAH6sqniROClZh/uEZVZjQ1wRK6thQ3ATEnjs17TbGAN8Ajw0eyYK4B7s8fLsudkrz8cEdHsA9yjMqupolamR8QKSUuAJ4B9wJPAAuC/gLskfT3btyh7yyLgJ5LWAdtpnCFsyoXKrMaK+nKHiLgJuOkNu9cD5x/g2N3Axw4mvguVWU1FwN7BanR/XKjMaqox9XOhMrPEVeVaPxcqs5o6yOUJbdVy3CdpiqRHJK3JLjqcdzgSM7OyFXoJTanyjKj2AddHxBOSjgZWSfp5RKwpOTczK1nH3DM9IjbTuMCQiHhd0loa1+q4UJlVWOOsXwd+XVZ235hzgBUHeK0X6AUYfdSxBaRmZmWq0q2Ic08+JR0F/AyYHxGvvfH1iFgQET0R0dN15IQiczSzkgxmX5nVamu3XCMqSaNpFKnFEbG03JTM7HCo0lm/loUqu8hwEbA2Ir5TfkpmdrikcEYvjzwjqlnA5cAzkp7K9t0YEcvLS8vMyhYh9nVKoYqIxyGBSaqZFa5jpn5m1pk6qkdlZp3LhcrMklaldVQuVGY1lsIaqTxKKVRTTt7Kzdf/oPC4p3f9v3WmhfjsR4r/0ojH77298JgA77jus6XEnX/2RaXEnXh58V/yAbDz1Ka32D4kj11c/P9ZgCtPvLz4oDuL+Jor2Ocb55lZ6jz1M7OkuUdlZpUQLlRmlrpaN9PNLH0R7lGZWfLEgM/6mVnq3KMys6T5Wj8zS180+lRV4EJlVmM+62dmSQs3082sCjz1M7Pk+ayfmSUtwoXKzCrAyxPMLHnuUZlZ0gIx6LN+Zpa6igyoXKjMaqtCzfRqjPvMrByRc2tB0iRJSyT9RtJaSe+SdJykn0t6Nvvz2OxYSfqupHWSnpZ0bqv4LlRmNRahXFsOtwL3R8TbgLOBtcANwEMRMR14KHsO8CFgerb1Are1Cl7K1G/DruO47plPFB737j9fVHhMgLct+G3hMb+29fzCYwLc+Zc/LCVu7+euLSXuztP2lRL3rZ/5ZeExH/7I5MJjAqy9/oTCY+7+55H/6AYwODjyqZ+kicB7gCsBIqIf6Jc0B3hvdtgdwKPAV4A5wI8jIoBfZKOxUyJi83Cf4RGVWV0FEMq3NTcN2ArcLulJSQslTQBOHlJ8tgAnZ4+7gY1D3t+X7RuWC5VZjUXk24ATJK0csvUOCdMFnAvcFhHnADv40zQv+5zI2e06MJ/1M6uz/KVjW0T0DPNaH9AXESuy50toFKrf75/SSToFeDF7fRMwZcj7J2f7huURlVlt5Wukt2qmR8QWYKOkGdmu2cAaYBlwRbbvCuDe7PEy4JPZ2b+ZwKvN+lPgEZVZvRW34vPzwGJJY4D1wFU0BkL3SLoaeAH4eHbscuAiYB2wMzu2KRcqs7oKiALO+gFExFPAgaaGsw9wbADXHEx8FyqzWuuwlemSRmWnHu8rMyEzO4wKWpletoNpps+jsdrUzDpFJxUqSZOBi4GF5aZjZodNcQs+S5e3R3UL8GXg6OEOyBaA9QKMPnHiyDMzs9JV5cZ5LUdUki4BXoyIVc2Oi4gFEdETET2jjhlfWIJmVqJB5dvaLM+IahbwYUkXAeOAYyTdGRGXlZuamZVNnTKiioivRsTkiJgKzAUedpEy6wB5G+kJFDOvozKrrTQa5XkcVKGKiEdp3FPGzDpBAqOlPDyiMquzwXYnkI8LlVld7V9HVQEuVGY1VpWzfi5UZnVWkULlG+eZWfJKGVG9Zfw2lpxT/GWBo0oq//c9MtwdVg/d2JfK+R3w9PK3lxJ36isbWx90CDb+9ZTWBx0CnfeOwmO+0L+j8JgAo7ePKjymBorpLXnqZ2ZpC5K4PCYPFyqzOvOIysxS56mfmaXPhcrMkudCZWYpU3jqZ2ZV4LN+ZpY6j6jMLH0uVGaWNPeozKwSXKjMLHWqyI3zfPcEM0ueR1Rmdeapn5klzc10M6sEFyozS54LlZmlTFTnrJ8LlVlduUdlZpXgQmVmyatzodr466OZN2N24XG33D218JgAZyx+vfCYe48bV3hMgB3f2l1K3G9Mv7eUuF+68XOlxP3MXcXn+41/urzwmABTNvUXHvP3rxVTYYqc+kkaBawENkXEJZKmAXcBxwOrgMsjol/SWODHwHnAS8AnIuL5ZrG9Mt2sziLnls88YO2Q598Ebo6IM4CXgauz/VcDL2f7b86Oa8qFyqyuonHWL8/WiqTJwMXAwuy5gPcDS7JD7gAuzR7PyZ6TvT47O35YLlRmdVbciOoW4MvA/rJ2PPBKROzLnvc
"text/plain": [
"<Figure size 432x288 with 2 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.imshow(mat)\n",
"plt.colorbar()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv('./Tensorflow-Bootcamp-master/00-Crash-Course-Basics/salaries.csv')"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Name</th>\n",
" <th>Salary</th>\n",
" <th>Age</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>John</td>\n",
" <td>50000</td>\n",
" <td>34</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Sally</td>\n",
" <td>120000</td>\n",
" <td>45</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Alyssa</td>\n",
" <td>80000</td>\n",
" <td>27</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Name Salary Age\n",
"0 John 50000 34\n",
"1 Sally 120000 45\n",
"2 Alyssa 80000 27"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<matplotlib.axes._subplots.AxesSubplot at 0x10fe6b860>"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAD4CAYAAAAZ1BptAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3dd3wVdfb/8dchVOmEUBNI6L2GGlfsIBas1FWIuqgotl3buuu67rq6TVdsK7/FYKGIyAqiLMuKNTRD6D2SAKHXQGhpn98fd/B7xVwIaTfl/Xw87oO5Zz4zc+7cS86dz8z9jDnnEBERyU2FYCcgIiIll4qEiIgEpCIhIiIBqUiIiEhAKhIiIhJQxWAnUNjq16/vIiMjg52GiEipsnz58gPOubCz42WuSERGRpKQkBDsNEREShUz25ZbXN1NIiISkIqEiIgEpCIhIiIBlblzEiIiZ8vMzCQ1NZVTp04FO5Wgq1q1KuHh4VSqVClP7VUkRKTMS01NpWbNmkRGRmJmwU4naJxzHDx4kNTUVKKiovK0zHm7m8zsbTPbZ2Zr/WJ/NbONZrbazP5tZnX85j1lZklmtsnMBvrFB3mxJDN70i8eZWZLvfgHZlbZi1fxnid58yPz9IpERM5y6tQpQkNDy3WBADAzQkNDL+iIKi/nJCYDg86KLQA6Oee6AJuBp7wEOgDDgY7eMm+YWYiZhQCvA9cAHYARXluAPwMvO+daAYeBu7z4XcBhL/6y105EJF/Ke4E440L3w3mLhHPua+DQWbH/OueyvKdLgHBveggw3Tl32jmXDCQBvb1HknNuq3MuA5gODDFftpcDM73l3wFu9FvXO970TOAK07sspVTq4RNMW7advUfVJy6lS2Fc3XQnMM+bbgrs8JuX6sUCxUOBI34F50z8R+vy5qd57X/CzMaaWYKZJezfv7/AL0ikMC1Yv5fBr3zDU7PWEPPiQh6ctoIV2w8HOy0Jgueff56OHTvSpUsXunXrxtKlSwO2HTNmDDNnzgw4v7gU6MS1mT0NZAFTCied/HHOTQQmAkRHR+suSlIiZGbn8Lf5m3jr6610alqLpwd3YMH6vcxI2MGcVbvoFlGH2JhIBnduTKUQXY1e1i1evJi5c+eSmJhIlSpVOHDgABkZGYW2/qysLCpWLPxrkfL9yTSzMcB1wCj3f7e32wlE+DUL92KB4geBOmZW8az4j9blza/ttRcp8XannWT4xCW89fVWbu/bnJn39qdfy1Ceub4DS359Bc9e34EjJzJ4aPpKLv7zQl5buIWD6aeDnbYUod27d1O/fn2qVKkCQP369WnSpAnPPfccvXr1olOnTowdO5bc7hYaqM2ll17Kww8/THR0NM8//zxRUVFkZmYCcPTo0R89z698lR0zGwQ8Dgxwzp3wmzUHmGpmLwFNgNbAMsCA1mYWhe+P/3BgpHPOmdkXwK34zlOMBmb7rWs0sNibv9DpXqtSCny1eT+PfLCS05nZTBjRnRu6NvnR/BpVKjImJoo7+kXy5eZ9xMWn8Lf/bmbCwiRu7NaE2Jgo2jeuFaTsy77ff7KO9buOFuo6OzSpxe+u73jONldffTXPPfccbdq04corr2TYsGEMGDCABx54gGeeeQaA22+/nblz53L99df/aNlztcnIyPhhvLqUlBQ+/fRTbrzxRqZPn87NN9+c599DBJKXS2Cn4ftD3dbMUs3sLuA1oCawwMxWmtk/AZxz64AZwHrgP8D9zrls75zCA8B8YAMww2sL8ATwqJkl4TvnMMmLTwJCvfijwA+XzYqURNk5jr//dxNj4pbRoGYV5oy/+CcFwl+FCsbl7Rry3l19WPDIJdzWM5xPVu3mmle+Ydhbi/nP2j1k5+h7UVlRo0YNli9fzsSJEwkLC2PYsGFMnjyZL774gj59+tC5c2cWLlzIunXrfrLsudoMGzbsh+m7776buLg4AOLi4oiNjS1w3uc9knDOjcglPCmX2Jn2zwPP5xL/DPgsl/hWfFc/nR0/Bdx2vvxESoJ9x07x0LSVLN56kKHR4fz+hk5UqxyS5+VbN6zJ8zd15vGB7Zj+3XbeXbyNe99fTnjdaozuF8nQXhHUrlawb4Tic75v/EUpJCSESy+9lEsvvZTOnTvz1ltvsXr1ahISEoiIiODZZ5/9yW8YTp06xbhx4wK2qV69+g/TMTExpKSk8OWXX5KdnU2nTp0KnLPOlokU0OLvD3LthG9ZseMwf721C3+5tesFFQh/tS+qxD0DWvLVY5fy5qgeNKldjec/20DfP33Obz5eQ9K+9ELOXorLpk2b2LJlyw/PV65cSdu2bQHf+Yn09PRcr2Y6UxDO1cbfHXfcwciRIwvlKAI0LIdIvuXkON786nv+/t9NRNavzvt39aFto5qFsu6KIRW4pnNjruncmLU705i8KIUZ36Xy/pLtXNImjNiYSAa0DqNCBf10qLRIT09n/PjxHDlyhIoVK9KqVSsmTpxInTp16NSpE40aNaJXr14/Wa5OnTr84he/OGcbf6NGjeI3v/kNI0bk1gl04aysnQuOjo52uumQFLVDxzN45IOVfLV5Pzd0bcKfbu5MjSpF+53rQPpppi7dzntLtrH/2GlahFVnTP9IbukRTvUi3nZpt2HDBtq3bx/sNIrFzJkzmT17Nu+9917ANrntDzNb7pyLPrutPlkiF2j5tkM8MHUFB9MzeP6mTozs3axYhnyoX6MKD17RmnsHtOSzNbuJi0/mmdnr+Ov8TQyLjmB0/0gi6l1U5HlIyTV+/HjmzZvHZ5/95PRvvqlIiOSRc45J3ybz4ryNNKlTjVnj+tOpae1iz6NyxQrc2L0pQ7o1IXH7EeLik4lblMKk+GSubN+Q2JhI+rXQYHbl0auvvlro61SREMmDtBOZ/GrmKhas38ugjo34y21dqFU1uFcbmRk9m9elZ/O67E47yftLtjF16XYWrN9Lu0Y1iY2JZEi3plStlL+T6CKgq5tEzmt16hGue+0bvti4j2eu68CbP+8R9AJxtsa1q/HYwHYsfuoK/nxLZwCe+GgN/V74nL/O38ieNA0sKPmjIwmRAJxzvLdkG3+cu4H6NSoz495+9GhWN9hpnVPVSiEM69WModERLNl6iLj4ZN748nve+mor13RuzJj+kfRoVkddUZJnKhIiuUg/ncWTH61m7urdXNY2jJeGdqNu9crBTivPzIx+LUPp1zKUHYdO8M6iFD5I2MEnq3bRNbw2sTFRDO7cmMoV1Zkg56ZPiMhZNuw+yg2vfsu8tXt4YlA7Jo3uVaoKxNki6l3Eb67rwJKnruC5IR05diqLhz/wDSw44fMtHNDAgsXm448/xszYuHFjsFPJMxUJEY9zjhnf7eDG1+NJP53F1Lv7cN+lLcvMD9aqV6nIHf0i+d+jA4iL7UW7xrV4acFm+r+wkF99uIq1O9OCnWKZN23aNC6++GKmTZsW7FTyTEVCBDiRkcWvPlzN4x+tJjqyLp8++DP6tMj1HlelXoUKxmVtG/Dunb3536MDGNYrgk9X7+a6V79l6D8XM2/NbrKyc4KdZpmTnp7Ot99+y6RJk5g+fToAOTk5jBs3jnbt2nHVVVcxePDgH4bdWL58OQMGDKBnz54MHDiQ3bt3ByVvnZOQci9p3zHGTUlky750HrqiNQ9e0ZqQMnL0cD6tGtTgDzd24lcD2zLjux28sziF+6Yk0rRONe7o15zhvZpR+6KSdSVXgc17EvasKdx1NuoM17x4ziazZ89m0KBBtGnThtDQUJYvX05ycjIpKSmsX7+effv20b59e+68804yMzMZP348s2fPJiwsjA8++ICnn36at99+u3DzzgMVCSnXZq/cyVOz1lCtUgjv3tmbn7UOC3ZKQVG7WiV+cUkL7rw4igXr9xIXn8wL8zbyj/9t4eYeTYmNiaRVg8IZl6q8mjZtGg899BAAw4cPZ9q0aWRlZXHbbbdRoUIFGjVqxGWXXQb4BgNcu3YtV111FQDZ2dk0btw4KHmrSEi5dCozm+fmrmfq0u30jqzHqyO707BW1WCnFXQhFYxBnRoxqFMj1u1KY3J8Ch8
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"df.plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}