[ADD] new files for diabetes classification NN
This commit is contained in:
parent
ae23cdd124
commit
5fb53be025
|
@ -0,0 +1,187 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Auto grad\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import torch\n",
|
||||
"import torchvision"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"tensor([5., 7., 9.], grad_fn=<AddBackward0>)\n",
|
||||
"<AddBackward0 object at 0x11f573ad0>\n",
|
||||
"tensor(21., grad_fn=<SumBackward0>)\n",
|
||||
"<SumBackward0 object at 0x11f595650>\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# The tensor object keeps track of how it was created if requieres_grad is True \n",
|
||||
"x = torch.tensor([1.,2.,3],requires_grad=True)\n",
|
||||
"y = torch.tensor([4.,5.,6],requires_grad=True)\n",
|
||||
"\n",
|
||||
"z = x + y\n",
|
||||
"print(z)\n",
|
||||
"\n",
|
||||
"print(z.grad_fn)\n",
|
||||
"s = z.sum()\n",
|
||||
"\n",
|
||||
"print(s)\n",
|
||||
"\n",
|
||||
"print(s.grad_fn)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"tensor([2., 2., 2.])\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"# To back propagate\n",
|
||||
"s.backward()\n",
|
||||
"print(x.grad)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"False False\n",
|
||||
"None\n",
|
||||
"<AddBackward0 object at 0x11f088650>\n",
|
||||
"True\n",
|
||||
"None\n",
|
||||
"True\n",
|
||||
"True\n",
|
||||
"False\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"x = torch.randn(2,2)\n",
|
||||
"y = torch.randn(2,2)\n",
|
||||
"print(x.requires_grad,y.requires_grad)\n",
|
||||
"\n",
|
||||
"z = x + y\n",
|
||||
"\n",
|
||||
"print(z.grad_fn)\n",
|
||||
"\n",
|
||||
"x.requires_grad_()\n",
|
||||
"y.requires_grad_()\n",
|
||||
"\n",
|
||||
"z= x + y\n",
|
||||
"\n",
|
||||
"print(z.grad_fn)\n",
|
||||
"\n",
|
||||
"print(z.requires_grad)\n",
|
||||
"\n",
|
||||
"new_z = z.detach()\n",
|
||||
"\n",
|
||||
"print(new_z.grad_fn)\n",
|
||||
"\n",
|
||||
"print(x.requires_grad)\n",
|
||||
"print((x+10).requires_grad)\n",
|
||||
"\n",
|
||||
"with torch.no_grad():\n",
|
||||
" print((x+10).requires_grad)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"tensor([[1., 1.],\n",
|
||||
" [1., 1.]], requires_grad=True)\n",
|
||||
"tensor([[3., 3.],\n",
|
||||
" [3., 3.]], grad_fn=<AddBackward0>)\n",
|
||||
"<AddBackward0 object at 0x11ee83b90>\n",
|
||||
"tensor([[27., 27.],\n",
|
||||
" [27., 27.]], grad_fn=<MulBackward0>) tensor(27., grad_fn=<MeanBackward0>)\n",
|
||||
"tensor([[4.5000, 4.5000],\n",
|
||||
" [4.5000, 4.5000]])\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"x = torch.ones(2,2,requires_grad=True)\n",
|
||||
"print(x)\n",
|
||||
"y = x + 2\n",
|
||||
"print(y)\n",
|
||||
"print(y.grad_fn)\n",
|
||||
"\n",
|
||||
"z = y*y*3\n",
|
||||
"\n",
|
||||
"out = z.mean()\n",
|
||||
"\n",
|
||||
"print(z,out)\n",
|
||||
"\n",
|
||||
"out.backward()\n",
|
||||
"print(x.grad)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
|
@ -0,0 +1,345 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"/Users/eddie/.pyenv/versions/3.7.6/envs/pytorch/lib/python3.7/site-packages/pandas/compat/__init__.py:117: UserWarning: Could not import the lzma module. Your installed Python is incomplete. Attempting to use lzma compression will result in a RuntimeError.\n",
|
||||
" warnings.warn(msg)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import torch\n",
|
||||
"import torch.nn as nn\n",
|
||||
"import pandas as pd\n",
|
||||
"from sklearn.preprocessing import StandardScaler\n",
|
||||
"from torch.utils.data import Dataset"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Load the data set using pandas\n",
|
||||
"data = pd.read_csv('diabetes.csv')\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/html": [
|
||||
"<div>\n",
|
||||
"<style scoped>\n",
|
||||
" .dataframe tbody tr th:only-of-type {\n",
|
||||
" vertical-align: middle;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe tbody tr th {\n",
|
||||
" vertical-align: top;\n",
|
||||
" }\n",
|
||||
"\n",
|
||||
" .dataframe thead th {\n",
|
||||
" text-align: right;\n",
|
||||
" }\n",
|
||||
"</style>\n",
|
||||
"<table border=\"1\" class=\"dataframe\">\n",
|
||||
" <thead>\n",
|
||||
" <tr style=\"text-align: right;\">\n",
|
||||
" <th></th>\n",
|
||||
" <th>Number of times pregnant</th>\n",
|
||||
" <th>Plasma glucose concentration</th>\n",
|
||||
" <th>Diastolic blood pressure</th>\n",
|
||||
" <th>Triceps skin fold thickness</th>\n",
|
||||
" <th>2-Hour serum insulin</th>\n",
|
||||
" <th>Body mass index</th>\n",
|
||||
" <th>Age</th>\n",
|
||||
" <th>Class</th>\n",
|
||||
" </tr>\n",
|
||||
" </thead>\n",
|
||||
" <tbody>\n",
|
||||
" <tr>\n",
|
||||
" <th>0</th>\n",
|
||||
" <td>6</td>\n",
|
||||
" <td>148</td>\n",
|
||||
" <td>72</td>\n",
|
||||
" <td>35</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>33.6</td>\n",
|
||||
" <td>50</td>\n",
|
||||
" <td>positive</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>1</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>85</td>\n",
|
||||
" <td>66</td>\n",
|
||||
" <td>29</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>26.6</td>\n",
|
||||
" <td>31</td>\n",
|
||||
" <td>negative</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>2</th>\n",
|
||||
" <td>8</td>\n",
|
||||
" <td>183</td>\n",
|
||||
" <td>64</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>23.3</td>\n",
|
||||
" <td>32</td>\n",
|
||||
" <td>positive</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>3</th>\n",
|
||||
" <td>1</td>\n",
|
||||
" <td>89</td>\n",
|
||||
" <td>66</td>\n",
|
||||
" <td>23</td>\n",
|
||||
" <td>94</td>\n",
|
||||
" <td>28.1</td>\n",
|
||||
" <td>21</td>\n",
|
||||
" <td>negative</td>\n",
|
||||
" </tr>\n",
|
||||
" <tr>\n",
|
||||
" <th>4</th>\n",
|
||||
" <td>0</td>\n",
|
||||
" <td>137</td>\n",
|
||||
" <td>40</td>\n",
|
||||
" <td>35</td>\n",
|
||||
" <td>168</td>\n",
|
||||
" <td>43.1</td>\n",
|
||||
" <td>33</td>\n",
|
||||
" <td>positive</td>\n",
|
||||
" </tr>\n",
|
||||
" </tbody>\n",
|
||||
"</table>\n",
|
||||
"</div>"
|
||||
],
|
||||
"text/plain": [
|
||||
" Number of times pregnant Plasma glucose concentration \\\n",
|
||||
"0 6 148 \n",
|
||||
"1 1 85 \n",
|
||||
"2 8 183 \n",
|
||||
"3 1 89 \n",
|
||||
"4 0 137 \n",
|
||||
"\n",
|
||||
" Diastolic blood pressure Triceps skin fold thickness \\\n",
|
||||
"0 72 35 \n",
|
||||
"1 66 29 \n",
|
||||
"2 64 0 \n",
|
||||
"3 66 23 \n",
|
||||
"4 40 35 \n",
|
||||
"\n",
|
||||
" 2-Hour serum insulin Body mass index Age Class \n",
|
||||
"0 0 33.6 50 positive \n",
|
||||
"1 0 26.6 31 negative \n",
|
||||
"2 0 23.3 32 positive \n",
|
||||
"3 94 28.1 21 negative \n",
|
||||
"4 168 43.1 33 positive "
|
||||
]
|
||||
},
|
||||
"execution_count": 3,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"data.head() "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"x = data.iloc[:,0:-1].values"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"(768, 7)"
|
||||
]
|
||||
},
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"x.shape"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_string = list(data.iloc[:,-1])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"768"
|
||||
]
|
||||
},
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"len(y_string)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y_int = []\n",
|
||||
"for i in y_string:\n",
|
||||
" if i == 'positive':\n",
|
||||
" y_int.append(1)\n",
|
||||
" else:\n",
|
||||
" y_int.append(0)\n",
|
||||
" "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y = np.array(y_int, dtype='float64') "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# data normaalization\n",
|
||||
"sc = StandardScaler()\n",
|
||||
"x = sc.fit_transform(x)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"x = torch.tensor(x)\n",
|
||||
"y = torch.tensor(y)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"torch.Size([768, 7])"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"x.shape"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"y = y.unsqueeze(1)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"torch.Size([768, 1])"
|
||||
]
|
||||
},
|
||||
"execution_count": 14,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"y.shape"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
|
@ -8,7 +8,7 @@
|
|||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"True"
|
||||
"False"
|
||||
]
|
||||
},
|
||||
"execution_count": 1,
|
||||
|
@ -82,7 +82,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"execution_count": 5,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -91,7 +91,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"execution_count": 6,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -173,7 +173,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"execution_count": 7,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -194,7 +194,7 @@
|
|||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"execution_count": 8,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
@ -214,6 +214,110 @@
|
|||
"print(T,T.dtype)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Tensor Concatenation"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"tensor([[ 0.7607, 0.2490, -1.5199, 0.4037, 0.0063],\n",
|
||||
" [ 0.2223, -1.0452, -1.6327, -0.1692, -0.8291]])\n",
|
||||
"tensor([[-0.2285, 0.7535, -1.4712, 1.1518, 0.4560],\n",
|
||||
" [-0.4817, -0.6983, -0.9611, -1.5915, -1.7998],\n",
|
||||
" [-0.3149, 0.4309, 1.4270, 0.1497, -0.4793]])\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"tensor([[ 0.7607, 0.2490, -1.5199, 0.4037, 0.0063],\n",
|
||||
" [ 0.2223, -1.0452, -1.6327, -0.1692, -0.8291],\n",
|
||||
" [-0.2285, 0.7535, -1.4712, 1.1518, 0.4560],\n",
|
||||
" [-0.4817, -0.6983, -0.9611, -1.5915, -1.7998],\n",
|
||||
" [-0.3149, 0.4309, 1.4270, 0.1497, -0.4793]])\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"first_1 = torch.randn(2,5)\n",
|
||||
"print(first_1)\n",
|
||||
"second_1 = torch.randn(3,5)\n",
|
||||
"print(second_1)\n",
|
||||
"# Concaatenate along the 0 dimension row-wise\n",
|
||||
"con_1 = torch.cat([first_1,second_1])\n",
|
||||
"print(\"\\n\")\n",
|
||||
"print(con_1)\n",
|
||||
"\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"tensor([[-0.6601, 1.8097, 0.6295],\n",
|
||||
" [-1.8868, -2.2800, 1.7137]])\n",
|
||||
"tensor([[ 1.2576, -0.5680, 1.2772, -0.2566, -2.1952],\n",
|
||||
" [-0.4767, -0.5083, -0.0795, -1.5576, 0.6238]])\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"tensor([[-0.6601, 1.8097, 0.6295, 1.2576, -0.5680, 1.2772, -0.2566, -2.1952],\n",
|
||||
" [-1.8868, -2.2800, 1.7137, -0.4767, -0.5083, -0.0795, -1.5576, 0.6238]])\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"first_2 = torch.randn(2,3)\n",
|
||||
"print(first_2)\n",
|
||||
"second_2 = torch.randn(2,5)\n",
|
||||
"print(second_2)\n",
|
||||
"# Concaatenate along the 1 dimension column-wise\n",
|
||||
"con_2 = torch.cat([first_2,second_2],1)\n",
|
||||
"print(\"\\n\")\n",
|
||||
"print(con_2)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Adding ddimensions to tensors"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"tensor([[2, 3, 4, 5]])\n",
|
||||
"torch.Size([1, 4])\n",
|
||||
"torch.Size([4])\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"tensor_1 = torch.tensor([2,3,4,5])\n",
|
||||
"tensor_a = torch.unsqueeze(tensor_1,0)\n",
|
||||
"print(tensor_a)\n",
|
||||
"print(tensor_a.shape)\n",
|
||||
"print(tensor_1.shape)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
|
|
|
@ -0,0 +1,142 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 63,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# The main function that prints \n",
|
||||
"# all combinations of size r in \n",
|
||||
"# arr[] of size n. This function \n",
|
||||
"# mainly uses combinationUtil() \n",
|
||||
"def printCombination(arr, n, r): \n",
|
||||
" \n",
|
||||
" # A temporary array to \n",
|
||||
" # store all combination \n",
|
||||
" # one by one \n",
|
||||
" data = [0]*r; \n",
|
||||
" \n",
|
||||
" # Print all combination \n",
|
||||
" # using temprary array 'data[]' \n",
|
||||
" combinationUtil(arr, data, 0, \n",
|
||||
" n - 1, 0, r); \n",
|
||||
" \n",
|
||||
"# arr[] ---> Input Array \n",
|
||||
"# data[] ---> Temporary array to \n",
|
||||
"# store current combination \n",
|
||||
"# start & end ---> Staring and Ending \n",
|
||||
"# indexes in arr[] \n",
|
||||
"# index ---> Current index in data[] \n",
|
||||
"# r ---> Size of a combination \n",
|
||||
"# to be printed \n",
|
||||
"def combinationUtil(arr, data, start, \n",
|
||||
" end, index, r): \n",
|
||||
" \n",
|
||||
" temp1 =[]\n",
|
||||
" # Current combination is ready \n",
|
||||
" # to be printed, print it \n",
|
||||
" if (index == r): \n",
|
||||
" temp2 = []\n",
|
||||
" for j in range(r): \n",
|
||||
" temp2.append(data[j])\n",
|
||||
" #print(data[j], end = \" \"); \n",
|
||||
" #print(); \n",
|
||||
" #temp1.append(temp2)\n",
|
||||
" #return temp1\n",
|
||||
" \n",
|
||||
" # replace index with all \n",
|
||||
" # possible elements. The \n",
|
||||
" # condition \"end-i+1 >= \n",
|
||||
" # r-index\" makes sure that \n",
|
||||
" # including one element at \n",
|
||||
" # index will make a combination \n",
|
||||
" # with remaining elements at \n",
|
||||
" # remaining positions \n",
|
||||
" i = start; \n",
|
||||
" while(i <= end and end - i + 1 >= r - index): \n",
|
||||
" data[index] = arr[i]; \n",
|
||||
" combinationUtil(arr, data, i + 1, \n",
|
||||
" end, index + 1, r); \n",
|
||||
" i += 1; \n",
|
||||
" \n",
|
||||
" return temp1"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 64,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "IndexError",
|
||||
"evalue": "list assignment index out of range",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-64-eede45e736f3>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mn\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0malg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mprintCombination\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marr\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||
"\u001b[0;32m<ipython-input-63-85ad8d7a3f5f>\u001b[0m in \u001b[0;36mprintCombination\u001b[0;34m(arr, n, r)\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0;31m# using temprary array 'data[]'\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 14\u001b[0m combinationUtil(arr, data, 0, \n\u001b[0;32m---> 15\u001b[0;31m n - 1, 0, r); \n\u001b[0m\u001b[1;32m 16\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 17\u001b[0m \u001b[0;31m# arr[] ---> Input Array\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m<ipython-input-63-85ad8d7a3f5f>\u001b[0m in \u001b[0;36mcombinationUtil\u001b[0;34m(arr, data, start, end, index, r)\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0marr\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m combinationUtil(arr, data, i + 1, \n\u001b[0;32m---> 52\u001b[0;31m end, index + 1, r); \n\u001b[0m\u001b[1;32m 53\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m<ipython-input-63-85ad8d7a3f5f>\u001b[0m in \u001b[0;36mcombinationUtil\u001b[0;34m(arr, data, start, end, index, r)\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0marr\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m combinationUtil(arr, data, i + 1, \n\u001b[0;32m---> 52\u001b[0;31m end, index + 1, r); \n\u001b[0m\u001b[1;32m 53\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m<ipython-input-63-85ad8d7a3f5f>\u001b[0m in \u001b[0;36mcombinationUtil\u001b[0;34m(arr, data, start, end, index, r)\u001b[0m\n\u001b[1;32m 50\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0marr\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 51\u001b[0m combinationUtil(arr, data, i + 1, \n\u001b[0;32m---> 52\u001b[0;31m end, index + 1, r); \n\u001b[0m\u001b[1;32m 53\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 54\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m<ipython-input-63-85ad8d7a3f5f>\u001b[0m in \u001b[0;36mcombinationUtil\u001b[0;34m(arr, data, start, end, index, r)\u001b[0m\n\u001b[1;32m 48\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstart\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 49\u001b[0m \u001b[0;32mwhile\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m \u001b[0;34m<=\u001b[0m \u001b[0mend\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mend\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mi\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;36m1\u001b[0m \u001b[0;34m>=\u001b[0m \u001b[0mr\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mindex\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 50\u001b[0;31m \u001b[0mdata\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0marr\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 51\u001b[0m combinationUtil(arr, data, i + 1, \n\u001b[1;32m 52\u001b[0m end, index + 1, r); \n",
|
||||
"\u001b[0;31mIndexError\u001b[0m: list assignment index out of range"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"arr =[1,3,5,7,9,11,13,15]\n",
|
||||
"\n",
|
||||
"n = len(arr)\n",
|
||||
"\n",
|
||||
"alg = printCombination(arr,n,3)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 62,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"None\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(alg)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.6"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 4
|
||||
}
|
|
@ -0,0 +1,769 @@
|
|||
Number of times pregnant,Plasma glucose concentration,Diastolic blood pressure,Triceps skin fold thickness,2-Hour serum insulin,Body mass index,Age,Class
|
||||
6,148,72,35,0,33.6,50,positive
|
||||
1,85,66,29,0,26.6,31,negative
|
||||
8,183,64,0,0,23.3,32,positive
|
||||
1,89,66,23,94,28.1,21,negative
|
||||
0,137,40,35,168,43.1,33,positive
|
||||
5,116,74,0,0,25.6,30,negative
|
||||
3,78,50,32,88,31,26,positive
|
||||
10,115,0,0,0,35.3,29,negative
|
||||
2,197,70,45,543,30.5,53,positive
|
||||
8,125,96,0,0,0,54,positive
|
||||
4,110,92,0,0,37.6,30,negative
|
||||
10,168,74,0,0,38,34,positive
|
||||
10,139,80,0,0,27.1,57,negative
|
||||
1,189,60,23,846,30.1,59,positive
|
||||
5,166,72,19,175,25.8,51,positive
|
||||
7,100,0,0,0,30,32,positive
|
||||
0,118,84,47,230,45.8,31,positive
|
||||
7,107,74,0,0,29.6,31,positive
|
||||
1,103,30,38,83,43.3,33,negative
|
||||
1,115,70,30,96,34.6,32,positive
|
||||
3,126,88,41,235,39.3,27,negative
|
||||
8,99,84,0,0,35.4,50,negative
|
||||
7,196,90,0,0,39.8,41,positive
|
||||
9,119,80,35,0,29,29,positive
|
||||
11,143,94,33,146,36.6,51,positive
|
||||
10,125,70,26,115,31.1,41,positive
|
||||
7,147,76,0,0,39.4,43,positive
|
||||
1,97,66,15,140,23.2,22,negative
|
||||
13,145,82,19,110,22.2,57,negative
|
||||
5,117,92,0,0,34.1,38,negative
|
||||
5,109,75,26,0,36,60,negative
|
||||
3,158,76,36,245,31.6,28,positive
|
||||
3,88,58,11,54,24.8,22,negative
|
||||
6,92,92,0,0,19.9,28,negative
|
||||
10,122,78,31,0,27.6,45,negative
|
||||
4,103,60,33,192,24,33,negative
|
||||
11,138,76,0,0,33.2,35,negative
|
||||
9,102,76,37,0,32.9,46,positive
|
||||
2,90,68,42,0,38.2,27,positive
|
||||
4,111,72,47,207,37.1,56,positive
|
||||
3,180,64,25,70,34,26,negative
|
||||
7,133,84,0,0,40.2,37,negative
|
||||
7,106,92,18,0,22.7,48,negative
|
||||
9,171,110,24,240,45.4,54,positive
|
||||
7,159,64,0,0,27.4,40,negative
|
||||
0,180,66,39,0,42,25,positive
|
||||
1,146,56,0,0,29.7,29,negative
|
||||
2,71,70,27,0,28,22,negative
|
||||
7,103,66,32,0,39.1,31,positive
|
||||
7,105,0,0,0,0,24,negative
|
||||
1,103,80,11,82,19.4,22,negative
|
||||
1,101,50,15,36,24.2,26,negative
|
||||
5,88,66,21,23,24.4,30,negative
|
||||
8,176,90,34,300,33.7,58,positive
|
||||
7,150,66,42,342,34.7,42,negative
|
||||
1,73,50,10,0,23,21,negative
|
||||
7,187,68,39,304,37.7,41,positive
|
||||
0,100,88,60,110,46.8,31,negative
|
||||
0,146,82,0,0,40.5,44,negative
|
||||
0,105,64,41,142,41.5,22,negative
|
||||
2,84,0,0,0,0,21,negative
|
||||
8,133,72,0,0,32.9,39,positive
|
||||
5,44,62,0,0,25,36,negative
|
||||
2,141,58,34,128,25.4,24,negative
|
||||
7,114,66,0,0,32.8,42,positive
|
||||
5,99,74,27,0,29,32,negative
|
||||
0,109,88,30,0,32.5,38,positive
|
||||
2,109,92,0,0,42.7,54,negative
|
||||
1,95,66,13,38,19.6,25,negative
|
||||
4,146,85,27,100,28.9,27,negative
|
||||
2,100,66,20,90,32.9,28,positive
|
||||
5,139,64,35,140,28.6,26,negative
|
||||
13,126,90,0,0,43.4,42,positive
|
||||
4,129,86,20,270,35.1,23,negative
|
||||
1,79,75,30,0,32,22,negative
|
||||
1,0,48,20,0,24.7,22,negative
|
||||
7,62,78,0,0,32.6,41,negative
|
||||
5,95,72,33,0,37.7,27,negative
|
||||
0,131,0,0,0,43.2,26,positive
|
||||
2,112,66,22,0,25,24,negative
|
||||
3,113,44,13,0,22.4,22,negative
|
||||
2,74,0,0,0,0,22,negative
|
||||
7,83,78,26,71,29.3,36,negative
|
||||
0,101,65,28,0,24.6,22,negative
|
||||
5,137,108,0,0,48.8,37,positive
|
||||
2,110,74,29,125,32.4,27,negative
|
||||
13,106,72,54,0,36.6,45,negative
|
||||
2,100,68,25,71,38.5,26,negative
|
||||
15,136,70,32,110,37.1,43,positive
|
||||
1,107,68,19,0,26.5,24,negative
|
||||
1,80,55,0,0,19.1,21,negative
|
||||
4,123,80,15,176,32,34,negative
|
||||
7,81,78,40,48,46.7,42,negative
|
||||
4,134,72,0,0,23.8,60,positive
|
||||
2,142,82,18,64,24.7,21,negative
|
||||
6,144,72,27,228,33.9,40,negative
|
||||
2,92,62,28,0,31.6,24,negative
|
||||
1,71,48,18,76,20.4,22,negative
|
||||
6,93,50,30,64,28.7,23,negative
|
||||
1,122,90,51,220,49.7,31,positive
|
||||
1,163,72,0,0,39,33,positive
|
||||
1,151,60,0,0,26.1,22,negative
|
||||
0,125,96,0,0,22.5,21,negative
|
||||
1,81,72,18,40,26.6,24,negative
|
||||
2,85,65,0,0,39.6,27,negative
|
||||
1,126,56,29,152,28.7,21,negative
|
||||
1,96,122,0,0,22.4,27,negative
|
||||
4,144,58,28,140,29.5,37,negative
|
||||
3,83,58,31,18,34.3,25,negative
|
||||
0,95,85,25,36,37.4,24,positive
|
||||
3,171,72,33,135,33.3,24,positive
|
||||
8,155,62,26,495,34,46,positive
|
||||
1,89,76,34,37,31.2,23,negative
|
||||
4,76,62,0,0,34,25,negative
|
||||
7,160,54,32,175,30.5,39,positive
|
||||
4,146,92,0,0,31.2,61,positive
|
||||
5,124,74,0,0,34,38,positive
|
||||
5,78,48,0,0,33.7,25,negative
|
||||
4,97,60,23,0,28.2,22,negative
|
||||
4,99,76,15,51,23.2,21,negative
|
||||
0,162,76,56,100,53.2,25,positive
|
||||
6,111,64,39,0,34.2,24,negative
|
||||
2,107,74,30,100,33.6,23,negative
|
||||
5,132,80,0,0,26.8,69,negative
|
||||
0,113,76,0,0,33.3,23,positive
|
||||
1,88,30,42,99,55,26,positive
|
||||
3,120,70,30,135,42.9,30,negative
|
||||
1,118,58,36,94,33.3,23,negative
|
||||
1,117,88,24,145,34.5,40,positive
|
||||
0,105,84,0,0,27.9,62,positive
|
||||
4,173,70,14,168,29.7,33,positive
|
||||
9,122,56,0,0,33.3,33,positive
|
||||
3,170,64,37,225,34.5,30,positive
|
||||
8,84,74,31,0,38.3,39,negative
|
||||
2,96,68,13,49,21.1,26,negative
|
||||
2,125,60,20,140,33.8,31,negative
|
||||
0,100,70,26,50,30.8,21,negative
|
||||
0,93,60,25,92,28.7,22,negative
|
||||
0,129,80,0,0,31.2,29,negative
|
||||
5,105,72,29,325,36.9,28,negative
|
||||
3,128,78,0,0,21.1,55,negative
|
||||
5,106,82,30,0,39.5,38,negative
|
||||
2,108,52,26,63,32.5,22,negative
|
||||
10,108,66,0,0,32.4,42,positive
|
||||
4,154,62,31,284,32.8,23,negative
|
||||
0,102,75,23,0,0,21,negative
|
||||
9,57,80,37,0,32.8,41,negative
|
||||
2,106,64,35,119,30.5,34,negative
|
||||
5,147,78,0,0,33.7,65,negative
|
||||
2,90,70,17,0,27.3,22,negative
|
||||
1,136,74,50,204,37.4,24,negative
|
||||
4,114,65,0,0,21.9,37,negative
|
||||
9,156,86,28,155,34.3,42,positive
|
||||
1,153,82,42,485,40.6,23,negative
|
||||
8,188,78,0,0,47.9,43,positive
|
||||
7,152,88,44,0,50,36,positive
|
||||
2,99,52,15,94,24.6,21,negative
|
||||
1,109,56,21,135,25.2,23,negative
|
||||
2,88,74,19,53,29,22,negative
|
||||
17,163,72,41,114,40.9,47,positive
|
||||
4,151,90,38,0,29.7,36,negative
|
||||
7,102,74,40,105,37.2,45,negative
|
||||
0,114,80,34,285,44.2,27,negative
|
||||
2,100,64,23,0,29.7,21,negative
|
||||
0,131,88,0,0,31.6,32,positive
|
||||
6,104,74,18,156,29.9,41,positive
|
||||
3,148,66,25,0,32.5,22,negative
|
||||
4,120,68,0,0,29.6,34,negative
|
||||
4,110,66,0,0,31.9,29,negative
|
||||
3,111,90,12,78,28.4,29,negative
|
||||
6,102,82,0,0,30.8,36,positive
|
||||
6,134,70,23,130,35.4,29,positive
|
||||
2,87,0,23,0,28.9,25,negative
|
||||
1,79,60,42,48,43.5,23,negative
|
||||
2,75,64,24,55,29.7,33,negative
|
||||
8,179,72,42,130,32.7,36,positive
|
||||
6,85,78,0,0,31.2,42,negative
|
||||
0,129,110,46,130,67.1,26,positive
|
||||
5,143,78,0,0,45,47,negative
|
||||
5,130,82,0,0,39.1,37,positive
|
||||
6,87,80,0,0,23.2,32,negative
|
||||
0,119,64,18,92,34.9,23,negative
|
||||
1,0,74,20,23,27.7,21,negative
|
||||
5,73,60,0,0,26.8,27,negative
|
||||
4,141,74,0,0,27.6,40,negative
|
||||
7,194,68,28,0,35.9,41,positive
|
||||
8,181,68,36,495,30.1,60,positive
|
||||
1,128,98,41,58,32,33,positive
|
||||
8,109,76,39,114,27.9,31,positive
|
||||
5,139,80,35,160,31.6,25,positive
|
||||
3,111,62,0,0,22.6,21,negative
|
||||
9,123,70,44,94,33.1,40,negative
|
||||
7,159,66,0,0,30.4,36,positive
|
||||
11,135,0,0,0,52.3,40,positive
|
||||
8,85,55,20,0,24.4,42,negative
|
||||
5,158,84,41,210,39.4,29,positive
|
||||
1,105,58,0,0,24.3,21,negative
|
||||
3,107,62,13,48,22.9,23,positive
|
||||
4,109,64,44,99,34.8,26,positive
|
||||
4,148,60,27,318,30.9,29,positive
|
||||
0,113,80,16,0,31,21,negative
|
||||
1,138,82,0,0,40.1,28,negative
|
||||
0,108,68,20,0,27.3,32,negative
|
||||
2,99,70,16,44,20.4,27,negative
|
||||
6,103,72,32,190,37.7,55,negative
|
||||
5,111,72,28,0,23.9,27,negative
|
||||
8,196,76,29,280,37.5,57,positive
|
||||
5,162,104,0,0,37.7,52,positive
|
||||
1,96,64,27,87,33.2,21,negative
|
||||
7,184,84,33,0,35.5,41,positive
|
||||
2,81,60,22,0,27.7,25,negative
|
||||
0,147,85,54,0,42.8,24,negative
|
||||
7,179,95,31,0,34.2,60,negative
|
||||
0,140,65,26,130,42.6,24,positive
|
||||
9,112,82,32,175,34.2,36,positive
|
||||
12,151,70,40,271,41.8,38,positive
|
||||
5,109,62,41,129,35.8,25,positive
|
||||
6,125,68,30,120,30,32,negative
|
||||
5,85,74,22,0,29,32,positive
|
||||
5,112,66,0,0,37.8,41,positive
|
||||
0,177,60,29,478,34.6,21,positive
|
||||
2,158,90,0,0,31.6,66,positive
|
||||
7,119,0,0,0,25.2,37,negative
|
||||
7,142,60,33,190,28.8,61,negative
|
||||
1,100,66,15,56,23.6,26,negative
|
||||
1,87,78,27,32,34.6,22,negative
|
||||
0,101,76,0,0,35.7,26,negative
|
||||
3,162,52,38,0,37.2,24,positive
|
||||
4,197,70,39,744,36.7,31,negative
|
||||
0,117,80,31,53,45.2,24,negative
|
||||
4,142,86,0,0,44,22,positive
|
||||
6,134,80,37,370,46.2,46,positive
|
||||
1,79,80,25,37,25.4,22,negative
|
||||
4,122,68,0,0,35,29,negative
|
||||
3,74,68,28,45,29.7,23,negative
|
||||
4,171,72,0,0,43.6,26,positive
|
||||
7,181,84,21,192,35.9,51,positive
|
||||
0,179,90,27,0,44.1,23,positive
|
||||
9,164,84,21,0,30.8,32,positive
|
||||
0,104,76,0,0,18.4,27,negative
|
||||
1,91,64,24,0,29.2,21,negative
|
||||
4,91,70,32,88,33.1,22,negative
|
||||
3,139,54,0,0,25.6,22,positive
|
||||
6,119,50,22,176,27.1,33,positive
|
||||
2,146,76,35,194,38.2,29,negative
|
||||
9,184,85,15,0,30,49,positive
|
||||
10,122,68,0,0,31.2,41,negative
|
||||
0,165,90,33,680,52.3,23,negative
|
||||
9,124,70,33,402,35.4,34,negative
|
||||
1,111,86,19,0,30.1,23,negative
|
||||
9,106,52,0,0,31.2,42,negative
|
||||
2,129,84,0,0,28,27,negative
|
||||
2,90,80,14,55,24.4,24,negative
|
||||
0,86,68,32,0,35.8,25,negative
|
||||
12,92,62,7,258,27.6,44,positive
|
||||
1,113,64,35,0,33.6,21,positive
|
||||
3,111,56,39,0,30.1,30,negative
|
||||
2,114,68,22,0,28.7,25,negative
|
||||
1,193,50,16,375,25.9,24,negative
|
||||
11,155,76,28,150,33.3,51,positive
|
||||
3,191,68,15,130,30.9,34,negative
|
||||
3,141,0,0,0,30,27,positive
|
||||
4,95,70,32,0,32.1,24,negative
|
||||
3,142,80,15,0,32.4,63,negative
|
||||
4,123,62,0,0,32,35,positive
|
||||
5,96,74,18,67,33.6,43,negative
|
||||
0,138,0,0,0,36.3,25,positive
|
||||
2,128,64,42,0,40,24,negative
|
||||
0,102,52,0,0,25.1,21,negative
|
||||
2,146,0,0,0,27.5,28,positive
|
||||
10,101,86,37,0,45.6,38,positive
|
||||
2,108,62,32,56,25.2,21,negative
|
||||
3,122,78,0,0,23,40,negative
|
||||
1,71,78,50,45,33.2,21,negative
|
||||
13,106,70,0,0,34.2,52,negative
|
||||
2,100,70,52,57,40.5,25,negative
|
||||
7,106,60,24,0,26.5,29,positive
|
||||
0,104,64,23,116,27.8,23,negative
|
||||
5,114,74,0,0,24.9,57,negative
|
||||
2,108,62,10,278,25.3,22,negative
|
||||
0,146,70,0,0,37.9,28,positive
|
||||
10,129,76,28,122,35.9,39,negative
|
||||
7,133,88,15,155,32.4,37,negative
|
||||
7,161,86,0,0,30.4,47,positive
|
||||
2,108,80,0,0,27,52,positive
|
||||
7,136,74,26,135,26,51,negative
|
||||
5,155,84,44,545,38.7,34,negative
|
||||
1,119,86,39,220,45.6,29,positive
|
||||
4,96,56,17,49,20.8,26,negative
|
||||
5,108,72,43,75,36.1,33,negative
|
||||
0,78,88,29,40,36.9,21,negative
|
||||
0,107,62,30,74,36.6,25,positive
|
||||
2,128,78,37,182,43.3,31,positive
|
||||
1,128,48,45,194,40.5,24,positive
|
||||
0,161,50,0,0,21.9,65,negative
|
||||
6,151,62,31,120,35.5,28,negative
|
||||
2,146,70,38,360,28,29,positive
|
||||
0,126,84,29,215,30.7,24,negative
|
||||
14,100,78,25,184,36.6,46,positive
|
||||
8,112,72,0,0,23.6,58,negative
|
||||
0,167,0,0,0,32.3,30,positive
|
||||
2,144,58,33,135,31.6,25,positive
|
||||
5,77,82,41,42,35.8,35,negative
|
||||
5,115,98,0,0,52.9,28,positive
|
||||
3,150,76,0,0,21,37,negative
|
||||
2,120,76,37,105,39.7,29,negative
|
||||
10,161,68,23,132,25.5,47,positive
|
||||
0,137,68,14,148,24.8,21,negative
|
||||
0,128,68,19,180,30.5,25,positive
|
||||
2,124,68,28,205,32.9,30,positive
|
||||
6,80,66,30,0,26.2,41,negative
|
||||
0,106,70,37,148,39.4,22,negative
|
||||
2,155,74,17,96,26.6,27,positive
|
||||
3,113,50,10,85,29.5,25,negative
|
||||
7,109,80,31,0,35.9,43,positive
|
||||
2,112,68,22,94,34.1,26,negative
|
||||
3,99,80,11,64,19.3,30,negative
|
||||
3,182,74,0,0,30.5,29,positive
|
||||
3,115,66,39,140,38.1,28,negative
|
||||
6,194,78,0,0,23.5,59,positive
|
||||
4,129,60,12,231,27.5,31,negative
|
||||
3,112,74,30,0,31.6,25,positive
|
||||
0,124,70,20,0,27.4,36,positive
|
||||
13,152,90,33,29,26.8,43,positive
|
||||
2,112,75,32,0,35.7,21,negative
|
||||
1,157,72,21,168,25.6,24,negative
|
||||
1,122,64,32,156,35.1,30,positive
|
||||
10,179,70,0,0,35.1,37,negative
|
||||
2,102,86,36,120,45.5,23,positive
|
||||
6,105,70,32,68,30.8,37,negative
|
||||
8,118,72,19,0,23.1,46,negative
|
||||
2,87,58,16,52,32.7,25,negative
|
||||
1,180,0,0,0,43.3,41,positive
|
||||
12,106,80,0,0,23.6,44,negative
|
||||
1,95,60,18,58,23.9,22,negative
|
||||
0,165,76,43,255,47.9,26,negative
|
||||
0,117,0,0,0,33.8,44,negative
|
||||
5,115,76,0,0,31.2,44,positive
|
||||
9,152,78,34,171,34.2,33,positive
|
||||
7,178,84,0,0,39.9,41,positive
|
||||
1,130,70,13,105,25.9,22,negative
|
||||
1,95,74,21,73,25.9,36,negative
|
||||
1,0,68,35,0,32,22,negative
|
||||
5,122,86,0,0,34.7,33,negative
|
||||
8,95,72,0,0,36.8,57,negative
|
||||
8,126,88,36,108,38.5,49,negative
|
||||
1,139,46,19,83,28.7,22,negative
|
||||
3,116,0,0,0,23.5,23,negative
|
||||
3,99,62,19,74,21.8,26,negative
|
||||
5,0,80,32,0,41,37,positive
|
||||
4,92,80,0,0,42.2,29,negative
|
||||
4,137,84,0,0,31.2,30,negative
|
||||
3,61,82,28,0,34.4,46,negative
|
||||
1,90,62,12,43,27.2,24,negative
|
||||
3,90,78,0,0,42.7,21,negative
|
||||
9,165,88,0,0,30.4,49,positive
|
||||
1,125,50,40,167,33.3,28,positive
|
||||
13,129,0,30,0,39.9,44,positive
|
||||
12,88,74,40,54,35.3,48,negative
|
||||
1,196,76,36,249,36.5,29,positive
|
||||
5,189,64,33,325,31.2,29,positive
|
||||
5,158,70,0,0,29.8,63,negative
|
||||
5,103,108,37,0,39.2,65,negative
|
||||
4,146,78,0,0,38.5,67,positive
|
||||
4,147,74,25,293,34.9,30,negative
|
||||
5,99,54,28,83,34,30,negative
|
||||
6,124,72,0,0,27.6,29,positive
|
||||
0,101,64,17,0,21,21,negative
|
||||
3,81,86,16,66,27.5,22,negative
|
||||
1,133,102,28,140,32.8,45,positive
|
||||
3,173,82,48,465,38.4,25,positive
|
||||
0,118,64,23,89,0,21,negative
|
||||
0,84,64,22,66,35.8,21,negative
|
||||
2,105,58,40,94,34.9,25,negative
|
||||
2,122,52,43,158,36.2,28,negative
|
||||
12,140,82,43,325,39.2,58,positive
|
||||
0,98,82,15,84,25.2,22,negative
|
||||
1,87,60,37,75,37.2,22,negative
|
||||
4,156,75,0,0,48.3,32,positive
|
||||
0,93,100,39,72,43.4,35,negative
|
||||
1,107,72,30,82,30.8,24,negative
|
||||
0,105,68,22,0,20,22,negative
|
||||
1,109,60,8,182,25.4,21,negative
|
||||
1,90,62,18,59,25.1,25,negative
|
||||
1,125,70,24,110,24.3,25,negative
|
||||
1,119,54,13,50,22.3,24,negative
|
||||
5,116,74,29,0,32.3,35,positive
|
||||
8,105,100,36,0,43.3,45,positive
|
||||
5,144,82,26,285,32,58,positive
|
||||
3,100,68,23,81,31.6,28,negative
|
||||
1,100,66,29,196,32,42,negative
|
||||
5,166,76,0,0,45.7,27,positive
|
||||
1,131,64,14,415,23.7,21,negative
|
||||
4,116,72,12,87,22.1,37,negative
|
||||
4,158,78,0,0,32.9,31,positive
|
||||
2,127,58,24,275,27.7,25,negative
|
||||
3,96,56,34,115,24.7,39,negative
|
||||
0,131,66,40,0,34.3,22,positive
|
||||
3,82,70,0,0,21.1,25,negative
|
||||
3,193,70,31,0,34.9,25,positive
|
||||
4,95,64,0,0,32,31,positive
|
||||
6,137,61,0,0,24.2,55,negative
|
||||
5,136,84,41,88,35,35,positive
|
||||
9,72,78,25,0,31.6,38,negative
|
||||
5,168,64,0,0,32.9,41,positive
|
||||
2,123,48,32,165,42.1,26,negative
|
||||
4,115,72,0,0,28.9,46,positive
|
||||
0,101,62,0,0,21.9,25,negative
|
||||
8,197,74,0,0,25.9,39,positive
|
||||
1,172,68,49,579,42.4,28,positive
|
||||
6,102,90,39,0,35.7,28,negative
|
||||
1,112,72,30,176,34.4,25,negative
|
||||
1,143,84,23,310,42.4,22,negative
|
||||
1,143,74,22,61,26.2,21,negative
|
||||
0,138,60,35,167,34.6,21,positive
|
||||
3,173,84,33,474,35.7,22,positive
|
||||
1,97,68,21,0,27.2,22,negative
|
||||
4,144,82,32,0,38.5,37,positive
|
||||
1,83,68,0,0,18.2,27,negative
|
||||
3,129,64,29,115,26.4,28,positive
|
||||
1,119,88,41,170,45.3,26,negative
|
||||
2,94,68,18,76,26,21,negative
|
||||
0,102,64,46,78,40.6,21,negative
|
||||
2,115,64,22,0,30.8,21,negative
|
||||
8,151,78,32,210,42.9,36,positive
|
||||
4,184,78,39,277,37,31,positive
|
||||
0,94,0,0,0,0,25,negative
|
||||
1,181,64,30,180,34.1,38,positive
|
||||
0,135,94,46,145,40.6,26,negative
|
||||
1,95,82,25,180,35,43,positive
|
||||
2,99,0,0,0,22.2,23,negative
|
||||
3,89,74,16,85,30.4,38,negative
|
||||
1,80,74,11,60,30,22,negative
|
||||
2,139,75,0,0,25.6,29,negative
|
||||
1,90,68,8,0,24.5,36,negative
|
||||
0,141,0,0,0,42.4,29,positive
|
||||
12,140,85,33,0,37.4,41,negative
|
||||
5,147,75,0,0,29.9,28,negative
|
||||
1,97,70,15,0,18.2,21,negative
|
||||
6,107,88,0,0,36.8,31,negative
|
||||
0,189,104,25,0,34.3,41,positive
|
||||
2,83,66,23,50,32.2,22,negative
|
||||
4,117,64,27,120,33.2,24,negative
|
||||
8,108,70,0,0,30.5,33,positive
|
||||
4,117,62,12,0,29.7,30,positive
|
||||
0,180,78,63,14,59.4,25,positive
|
||||
1,100,72,12,70,25.3,28,negative
|
||||
0,95,80,45,92,36.5,26,negative
|
||||
0,104,64,37,64,33.6,22,positive
|
||||
0,120,74,18,63,30.5,26,negative
|
||||
1,82,64,13,95,21.2,23,negative
|
||||
2,134,70,0,0,28.9,23,positive
|
||||
0,91,68,32,210,39.9,25,negative
|
||||
2,119,0,0,0,19.6,72,negative
|
||||
2,100,54,28,105,37.8,24,negative
|
||||
14,175,62,30,0,33.6,38,positive
|
||||
1,135,54,0,0,26.7,62,negative
|
||||
5,86,68,28,71,30.2,24,negative
|
||||
10,148,84,48,237,37.6,51,positive
|
||||
9,134,74,33,60,25.9,81,negative
|
||||
9,120,72,22,56,20.8,48,negative
|
||||
1,71,62,0,0,21.8,26,negative
|
||||
8,74,70,40,49,35.3,39,negative
|
||||
5,88,78,30,0,27.6,37,negative
|
||||
10,115,98,0,0,24,34,negative
|
||||
0,124,56,13,105,21.8,21,negative
|
||||
0,74,52,10,36,27.8,22,negative
|
||||
0,97,64,36,100,36.8,25,negative
|
||||
8,120,0,0,0,30,38,positive
|
||||
6,154,78,41,140,46.1,27,negative
|
||||
1,144,82,40,0,41.3,28,negative
|
||||
0,137,70,38,0,33.2,22,negative
|
||||
0,119,66,27,0,38.8,22,negative
|
||||
7,136,90,0,0,29.9,50,negative
|
||||
4,114,64,0,0,28.9,24,negative
|
||||
0,137,84,27,0,27.3,59,negative
|
||||
2,105,80,45,191,33.7,29,positive
|
||||
7,114,76,17,110,23.8,31,negative
|
||||
8,126,74,38,75,25.9,39,negative
|
||||
4,132,86,31,0,28,63,negative
|
||||
3,158,70,30,328,35.5,35,positive
|
||||
0,123,88,37,0,35.2,29,negative
|
||||
4,85,58,22,49,27.8,28,negative
|
||||
0,84,82,31,125,38.2,23,negative
|
||||
0,145,0,0,0,44.2,31,positive
|
||||
0,135,68,42,250,42.3,24,positive
|
||||
1,139,62,41,480,40.7,21,negative
|
||||
0,173,78,32,265,46.5,58,negative
|
||||
4,99,72,17,0,25.6,28,negative
|
||||
8,194,80,0,0,26.1,67,negative
|
||||
2,83,65,28,66,36.8,24,negative
|
||||
2,89,90,30,0,33.5,42,negative
|
||||
4,99,68,38,0,32.8,33,negative
|
||||
4,125,70,18,122,28.9,45,positive
|
||||
3,80,0,0,0,0,22,negative
|
||||
6,166,74,0,0,26.6,66,negative
|
||||
5,110,68,0,0,26,30,negative
|
||||
2,81,72,15,76,30.1,25,negative
|
||||
7,195,70,33,145,25.1,55,positive
|
||||
6,154,74,32,193,29.3,39,negative
|
||||
2,117,90,19,71,25.2,21,negative
|
||||
3,84,72,32,0,37.2,28,negative
|
||||
6,0,68,41,0,39,41,positive
|
||||
7,94,64,25,79,33.3,41,negative
|
||||
3,96,78,39,0,37.3,40,negative
|
||||
10,75,82,0,0,33.3,38,negative
|
||||
0,180,90,26,90,36.5,35,positive
|
||||
1,130,60,23,170,28.6,21,negative
|
||||
2,84,50,23,76,30.4,21,negative
|
||||
8,120,78,0,0,25,64,negative
|
||||
12,84,72,31,0,29.7,46,positive
|
||||
0,139,62,17,210,22.1,21,negative
|
||||
9,91,68,0,0,24.2,58,negative
|
||||
2,91,62,0,0,27.3,22,negative
|
||||
3,99,54,19,86,25.6,24,negative
|
||||
3,163,70,18,105,31.6,28,positive
|
||||
9,145,88,34,165,30.3,53,positive
|
||||
7,125,86,0,0,37.6,51,negative
|
||||
13,76,60,0,0,32.8,41,negative
|
||||
6,129,90,7,326,19.6,60,negative
|
||||
2,68,70,32,66,25,25,negative
|
||||
3,124,80,33,130,33.2,26,negative
|
||||
6,114,0,0,0,0,26,negative
|
||||
9,130,70,0,0,34.2,45,positive
|
||||
3,125,58,0,0,31.6,24,negative
|
||||
3,87,60,18,0,21.8,21,negative
|
||||
1,97,64,19,82,18.2,21,negative
|
||||
3,116,74,15,105,26.3,24,negative
|
||||
0,117,66,31,188,30.8,22,negative
|
||||
0,111,65,0,0,24.6,31,negative
|
||||
2,122,60,18,106,29.8,22,negative
|
||||
0,107,76,0,0,45.3,24,negative
|
||||
1,86,66,52,65,41.3,29,negative
|
||||
6,91,0,0,0,29.8,31,negative
|
||||
1,77,56,30,56,33.3,24,negative
|
||||
4,132,0,0,0,32.9,23,positive
|
||||
0,105,90,0,0,29.6,46,negative
|
||||
0,57,60,0,0,21.7,67,negative
|
||||
0,127,80,37,210,36.3,23,negative
|
||||
3,129,92,49,155,36.4,32,positive
|
||||
8,100,74,40,215,39.4,43,positive
|
||||
3,128,72,25,190,32.4,27,positive
|
||||
10,90,85,32,0,34.9,56,positive
|
||||
4,84,90,23,56,39.5,25,negative
|
||||
1,88,78,29,76,32,29,negative
|
||||
8,186,90,35,225,34.5,37,positive
|
||||
5,187,76,27,207,43.6,53,positive
|
||||
4,131,68,21,166,33.1,28,negative
|
||||
1,164,82,43,67,32.8,50,negative
|
||||
4,189,110,31,0,28.5,37,negative
|
||||
1,116,70,28,0,27.4,21,negative
|
||||
3,84,68,30,106,31.9,25,negative
|
||||
6,114,88,0,0,27.8,66,negative
|
||||
1,88,62,24,44,29.9,23,negative
|
||||
1,84,64,23,115,36.9,28,negative
|
||||
7,124,70,33,215,25.5,37,negative
|
||||
1,97,70,40,0,38.1,30,negative
|
||||
8,110,76,0,0,27.8,58,negative
|
||||
11,103,68,40,0,46.2,42,negative
|
||||
11,85,74,0,0,30.1,35,negative
|
||||
6,125,76,0,0,33.8,54,positive
|
||||
0,198,66,32,274,41.3,28,positive
|
||||
1,87,68,34,77,37.6,24,negative
|
||||
6,99,60,19,54,26.9,32,negative
|
||||
0,91,80,0,0,32.4,27,negative
|
||||
2,95,54,14,88,26.1,22,negative
|
||||
1,99,72,30,18,38.6,21,negative
|
||||
6,92,62,32,126,32,46,negative
|
||||
4,154,72,29,126,31.3,37,negative
|
||||
0,121,66,30,165,34.3,33,positive
|
||||
3,78,70,0,0,32.5,39,negative
|
||||
2,130,96,0,0,22.6,21,negative
|
||||
3,111,58,31,44,29.5,22,negative
|
||||
2,98,60,17,120,34.7,22,negative
|
||||
1,143,86,30,330,30.1,23,negative
|
||||
1,119,44,47,63,35.5,25,negative
|
||||
6,108,44,20,130,24,35,negative
|
||||
2,118,80,0,0,42.9,21,positive
|
||||
10,133,68,0,0,27,36,negative
|
||||
2,197,70,99,0,34.7,62,positive
|
||||
0,151,90,46,0,42.1,21,positive
|
||||
6,109,60,27,0,25,27,negative
|
||||
12,121,78,17,0,26.5,62,negative
|
||||
8,100,76,0,0,38.7,42,negative
|
||||
8,124,76,24,600,28.7,52,positive
|
||||
1,93,56,11,0,22.5,22,negative
|
||||
8,143,66,0,0,34.9,41,positive
|
||||
6,103,66,0,0,24.3,29,negative
|
||||
3,176,86,27,156,33.3,52,positive
|
||||
0,73,0,0,0,21.1,25,negative
|
||||
11,111,84,40,0,46.8,45,positive
|
||||
2,112,78,50,140,39.4,24,negative
|
||||
3,132,80,0,0,34.4,44,positive
|
||||
2,82,52,22,115,28.5,25,negative
|
||||
6,123,72,45,230,33.6,34,negative
|
||||
0,188,82,14,185,32,22,positive
|
||||
0,67,76,0,0,45.3,46,negative
|
||||
1,89,24,19,25,27.8,21,negative
|
||||
1,173,74,0,0,36.8,38,positive
|
||||
1,109,38,18,120,23.1,26,negative
|
||||
1,108,88,19,0,27.1,24,negative
|
||||
6,96,0,0,0,23.7,28,negative
|
||||
1,124,74,36,0,27.8,30,negative
|
||||
7,150,78,29,126,35.2,54,positive
|
||||
4,183,0,0,0,28.4,36,positive
|
||||
1,124,60,32,0,35.8,21,negative
|
||||
1,181,78,42,293,40,22,positive
|
||||
1,92,62,25,41,19.5,25,negative
|
||||
0,152,82,39,272,41.5,27,negative
|
||||
1,111,62,13,182,24,23,negative
|
||||
3,106,54,21,158,30.9,24,negative
|
||||
3,174,58,22,194,32.9,36,positive
|
||||
7,168,88,42,321,38.2,40,positive
|
||||
6,105,80,28,0,32.5,26,negative
|
||||
11,138,74,26,144,36.1,50,positive
|
||||
3,106,72,0,0,25.8,27,negative
|
||||
6,117,96,0,0,28.7,30,negative
|
||||
2,68,62,13,15,20.1,23,negative
|
||||
9,112,82,24,0,28.2,50,positive
|
||||
0,119,0,0,0,32.4,24,positive
|
||||
2,112,86,42,160,38.4,28,negative
|
||||
2,92,76,20,0,24.2,28,negative
|
||||
6,183,94,0,0,40.8,45,negative
|
||||
0,94,70,27,115,43.5,21,negative
|
||||
2,108,64,0,0,30.8,21,negative
|
||||
4,90,88,47,54,37.7,29,negative
|
||||
0,125,68,0,0,24.7,21,negative
|
||||
0,132,78,0,0,32.4,21,negative
|
||||
5,128,80,0,0,34.6,45,negative
|
||||
4,94,65,22,0,24.7,21,negative
|
||||
7,114,64,0,0,27.4,34,positive
|
||||
0,102,78,40,90,34.5,24,negative
|
||||
2,111,60,0,0,26.2,23,negative
|
||||
1,128,82,17,183,27.5,22,negative
|
||||
10,92,62,0,0,25.9,31,negative
|
||||
13,104,72,0,0,31.2,38,positive
|
||||
5,104,74,0,0,28.8,48,negative
|
||||
2,94,76,18,66,31.6,23,negative
|
||||
7,97,76,32,91,40.9,32,positive
|
||||
1,100,74,12,46,19.5,28,negative
|
||||
0,102,86,17,105,29.3,27,negative
|
||||
4,128,70,0,0,34.3,24,negative
|
||||
6,147,80,0,0,29.5,50,positive
|
||||
4,90,0,0,0,28,31,negative
|
||||
3,103,72,30,152,27.6,27,negative
|
||||
2,157,74,35,440,39.4,30,negative
|
||||
1,167,74,17,144,23.4,33,positive
|
||||
0,179,50,36,159,37.8,22,positive
|
||||
11,136,84,35,130,28.3,42,positive
|
||||
0,107,60,25,0,26.4,23,negative
|
||||
1,91,54,25,100,25.2,23,negative
|
||||
1,117,60,23,106,33.8,27,negative
|
||||
5,123,74,40,77,34.1,28,negative
|
||||
2,120,54,0,0,26.8,27,negative
|
||||
1,106,70,28,135,34.2,22,negative
|
||||
2,155,52,27,540,38.7,25,positive
|
||||
2,101,58,35,90,21.8,22,negative
|
||||
1,120,80,48,200,38.9,41,negative
|
||||
11,127,106,0,0,39,51,negative
|
||||
3,80,82,31,70,34.2,27,positive
|
||||
10,162,84,0,0,27.7,54,negative
|
||||
1,199,76,43,0,42.9,22,positive
|
||||
8,167,106,46,231,37.6,43,positive
|
||||
9,145,80,46,130,37.9,40,positive
|
||||
6,115,60,39,0,33.7,40,positive
|
||||
1,112,80,45,132,34.8,24,negative
|
||||
4,145,82,18,0,32.5,70,positive
|
||||
10,111,70,27,0,27.5,40,positive
|
||||
6,98,58,33,190,34,43,negative
|
||||
9,154,78,30,100,30.9,45,negative
|
||||
6,165,68,26,168,33.6,49,negative
|
||||
1,99,58,10,0,25.4,21,negative
|
||||
10,68,106,23,49,35.5,47,negative
|
||||
3,123,100,35,240,57.3,22,negative
|
||||
8,91,82,0,0,35.6,68,negative
|
||||
6,195,70,0,0,30.9,31,positive
|
||||
9,156,86,0,0,24.8,53,positive
|
||||
0,93,60,0,0,35.3,25,negative
|
||||
3,121,52,0,0,36,25,positive
|
||||
2,101,58,17,265,24.2,23,negative
|
||||
2,56,56,28,45,24.2,22,negative
|
||||
0,162,76,36,0,49.6,26,positive
|
||||
0,95,64,39,105,44.6,22,negative
|
||||
4,125,80,0,0,32.3,27,positive
|
||||
5,136,82,0,0,0,69,negative
|
||||
2,129,74,26,205,33.2,25,negative
|
||||
3,130,64,0,0,23.1,22,negative
|
||||
1,107,50,19,0,28.3,29,negative
|
||||
1,140,74,26,180,24.1,23,negative
|
||||
1,144,82,46,180,46.1,46,positive
|
||||
8,107,80,0,0,24.6,34,negative
|
||||
13,158,114,0,0,42.3,44,positive
|
||||
2,121,70,32,95,39.1,23,negative
|
||||
7,129,68,49,125,38.5,43,positive
|
||||
2,90,60,0,0,23.5,25,negative
|
||||
7,142,90,24,480,30.4,43,positive
|
||||
3,169,74,19,125,29.9,31,positive
|
||||
0,99,0,0,0,25,22,negative
|
||||
4,127,88,11,155,34.5,28,negative
|
||||
4,118,70,0,0,44.5,26,negative
|
||||
2,122,76,27,200,35.9,26,negative
|
||||
6,125,78,31,0,27.6,49,positive
|
||||
1,168,88,29,0,35,52,positive
|
||||
2,129,0,0,0,38.5,41,negative
|
||||
4,110,76,20,100,28.4,27,negative
|
||||
6,80,80,36,0,39.8,28,negative
|
||||
10,115,0,0,0,0,30,positive
|
||||
2,127,46,21,335,34.4,22,negative
|
||||
9,164,78,0,0,32.8,45,positive
|
||||
2,93,64,32,160,38,23,positive
|
||||
3,158,64,13,387,31.2,24,negative
|
||||
5,126,78,27,22,29.6,40,negative
|
||||
10,129,62,36,0,41.2,38,positive
|
||||
0,134,58,20,291,26.4,21,negative
|
||||
3,102,74,0,0,29.5,32,negative
|
||||
7,187,50,33,392,33.9,34,positive
|
||||
3,173,78,39,185,33.8,31,positive
|
||||
10,94,72,18,0,23.1,56,negative
|
||||
1,108,60,46,178,35.5,24,negative
|
||||
5,97,76,27,0,35.6,52,positive
|
||||
4,83,86,19,0,29.3,34,negative
|
||||
1,114,66,36,200,38.1,21,negative
|
||||
1,149,68,29,127,29.3,42,positive
|
||||
5,117,86,30,105,39.1,42,negative
|
||||
1,111,94,0,0,32.8,45,negative
|
||||
4,112,78,40,0,39.4,38,negative
|
||||
1,116,78,29,180,36.1,25,negative
|
||||
0,141,84,26,0,32.4,22,negative
|
||||
2,175,88,0,0,22.9,22,negative
|
||||
2,92,52,0,0,30.1,22,negative
|
||||
3,130,78,23,79,28.4,34,positive
|
||||
8,120,86,0,0,28.4,22,positive
|
||||
2,174,88,37,120,44.5,24,positive
|
||||
2,106,56,27,165,29,22,negative
|
||||
2,105,75,0,0,23.3,53,negative
|
||||
4,95,60,32,0,35.4,28,negative
|
||||
0,126,86,27,120,27.4,21,negative
|
||||
8,65,72,23,0,32,42,negative
|
||||
2,99,60,17,160,36.6,21,negative
|
||||
1,102,74,0,0,39.5,42,positive
|
||||
11,120,80,37,150,42.3,48,positive
|
||||
3,102,44,20,94,30.8,26,negative
|
||||
1,109,58,18,116,28.5,22,negative
|
||||
9,140,94,0,0,32.7,45,positive
|
||||
13,153,88,37,140,40.6,39,negative
|
||||
12,100,84,33,105,30,46,negative
|
||||
1,147,94,41,0,49.3,27,positive
|
||||
1,81,74,41,57,46.3,32,negative
|
||||
3,187,70,22,200,36.4,36,positive
|
||||
6,162,62,0,0,24.3,50,positive
|
||||
4,136,70,0,0,31.2,22,positive
|
||||
1,121,78,39,74,39,28,negative
|
||||
3,108,62,24,0,26,25,negative
|
||||
0,181,88,44,510,43.3,26,positive
|
||||
8,154,78,32,0,32.4,45,positive
|
||||
1,128,88,39,110,36.5,37,positive
|
||||
7,137,90,41,0,32,39,negative
|
||||
0,123,72,0,0,36.3,52,positive
|
||||
1,106,76,0,0,37.5,26,negative
|
||||
6,190,92,0,0,35.5,66,positive
|
||||
2,88,58,26,16,28.4,22,negative
|
||||
9,170,74,31,0,44,43,positive
|
||||
9,89,62,0,0,22.5,33,negative
|
||||
10,101,76,48,180,32.9,63,negative
|
||||
2,122,70,27,0,36.8,27,negative
|
||||
5,121,72,23,112,26.2,30,negative
|
||||
1,126,60,0,0,30.1,47,positive
|
||||
1,93,70,31,0,30.4,23,negative
|
|
Loading…
Reference in New Issue