[MOD] most recent 25-11-2020
This commit is contained in:
parent
5b7578af22
commit
e94c772a34
|
@ -5,3 +5,5 @@
|
||||||
.ipynb_checkpoints/*
|
.ipynb_checkpoints/*
|
||||||
|
|
||||||
data/*
|
data/*
|
||||||
|
|
||||||
|
__pycache__/*
|
||||||
|
|
|
@ -6243,7 +6243,7 @@
|
||||||
"name": "python",
|
"name": "python",
|
||||||
"nbconvert_exporter": "python",
|
"nbconvert_exporter": "python",
|
||||||
"pygments_lexer": "ipython3",
|
"pygments_lexer": "ipython3",
|
||||||
"version": "3.7.6"
|
"version": "3.7.7"
|
||||||
}
|
}
|
||||||
},
|
},
|
||||||
"nbformat": 4,
|
"nbformat": 4,
|
||||||
|
|
File diff suppressed because it is too large
Load Diff
|
@ -2,7 +2,7 @@
|
||||||
"cells": [
|
"cells": [
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 2,
|
"execution_count": 1,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [],
|
"outputs": [],
|
||||||
"source": [
|
"source": [
|
||||||
|
@ -13,25 +13,16 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 3,
|
"execution_count": 2,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [],
|
||||||
{
|
|
||||||
"name": "stderr",
|
|
||||||
"output_type": "stream",
|
|
||||||
"text": [
|
|
||||||
"Downloading: \"https://download.pytorch.org/models/vgg16-397923af.pth\" to /home/eddie/.cache/torch/checkpoints/vgg16-397923af.pth\n",
|
|
||||||
"100.0%\n"
|
|
||||||
]
|
|
||||||
}
|
|
||||||
],
|
|
||||||
"source": [
|
"source": [
|
||||||
"vgg16 = models.vgg16(pretrained=True)"
|
"vgg16 = models.vgg16(pretrained=True)"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 4,
|
"execution_count": 3,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
|
@ -92,7 +83,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 8,
|
"execution_count": 4,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
|
@ -109,7 +100,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 11,
|
"execution_count": 5,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
|
@ -168,16 +159,16 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 12,
|
"execution_count": 6,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
"data": {
|
"data": {
|
||||||
"text/plain": [
|
"text/plain": [
|
||||||
"<generator object Module.parameters at 0x7f99d03001d0>"
|
"<generator object Module.parameters at 0x7f00a2681d50>"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 12,
|
"execution_count": 6,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"output_type": "execute_result"
|
"output_type": "execute_result"
|
||||||
}
|
}
|
||||||
|
@ -188,7 +179,7 @@
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
"cell_type": "code",
|
"cell_type": "code",
|
||||||
"execution_count": 14,
|
"execution_count": 7,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"outputs": [
|
"outputs": [
|
||||||
{
|
{
|
||||||
|
@ -241,7 +232,7 @@
|
||||||
")>"
|
")>"
|
||||||
]
|
]
|
||||||
},
|
},
|
||||||
"execution_count": 14,
|
"execution_count": 7,
|
||||||
"metadata": {},
|
"metadata": {},
|
||||||
"output_type": "execute_result"
|
"output_type": "execute_result"
|
||||||
}
|
}
|
||||||
|
|
|
@ -0,0 +1,82 @@
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
from torch.autograd import Variable
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class SizeEstimator(object):
|
||||||
|
|
||||||
|
def __init__(self, model, input_size=(1,1,32,32), bits=32):
|
||||||
|
'''
|
||||||
|
Estimates the size of PyTorch models in memory
|
||||||
|
for a given input size
|
||||||
|
'''
|
||||||
|
self.model = model
|
||||||
|
self.input_size = input_size
|
||||||
|
self.bits = 32
|
||||||
|
return
|
||||||
|
|
||||||
|
def get_parameter_sizes(self):
|
||||||
|
'''Get sizes of all parameters in `model`'''
|
||||||
|
mods = list(self.model.modules())
|
||||||
|
sizes = []
|
||||||
|
|
||||||
|
for i in range(1,len(mods)):
|
||||||
|
m = mods[i]
|
||||||
|
p = list(m.parameters())
|
||||||
|
for j in range(len(p)):
|
||||||
|
sizes.append(np.array(p[j].size()))
|
||||||
|
|
||||||
|
self.param_sizes = sizes
|
||||||
|
return
|
||||||
|
|
||||||
|
def get_output_sizes(self):
|
||||||
|
'''Run sample input through each layer to get output sizes'''
|
||||||
|
input_ = Variable(torch.FloatTensor(*self.input_size), volatile=True)
|
||||||
|
mods = list(self.model.modules())
|
||||||
|
out_sizes = []
|
||||||
|
for i in range(1, len(mods)):
|
||||||
|
m = mods[i]
|
||||||
|
out = m(input_)
|
||||||
|
out_sizes.append(np.array(out.size()))
|
||||||
|
input_ = out
|
||||||
|
|
||||||
|
self.out_sizes = out_sizes
|
||||||
|
return
|
||||||
|
|
||||||
|
def calc_param_bits(self):
|
||||||
|
'''Calculate total number of bits to store `model` parameters'''
|
||||||
|
total_bits = 0
|
||||||
|
for i in range(len(self.param_sizes)):
|
||||||
|
s = self.param_sizes[i]
|
||||||
|
bits = np.prod(np.array(s))*self.bits
|
||||||
|
total_bits += bits
|
||||||
|
self.param_bits = total_bits
|
||||||
|
return
|
||||||
|
|
||||||
|
def calc_forward_backward_bits(self):
|
||||||
|
'''Calculate bits to store forward and backward pass'''
|
||||||
|
total_bits = 0
|
||||||
|
for i in range(len(self.out_sizes)):
|
||||||
|
s = self.out_sizes[i]
|
||||||
|
bits = np.prod(np.array(s))*self.bits
|
||||||
|
total_bits += bits
|
||||||
|
# multiply by 2 for both forward AND backward
|
||||||
|
self.forward_backward_bits = (total_bits*2)
|
||||||
|
return
|
||||||
|
|
||||||
|
def calc_input_bits(self):
|
||||||
|
'''Calculate bits to store input'''
|
||||||
|
self.input_bits = np.prod(np.array(self.input_size))*self.bits
|
||||||
|
return
|
||||||
|
|
||||||
|
def estimate_size(self):
|
||||||
|
'''Estimate model size in memory in megabytes and bits'''
|
||||||
|
self.get_parameter_sizes()
|
||||||
|
self.get_output_sizes()
|
||||||
|
self.calc_param_bits()
|
||||||
|
self.calc_forward_backward_bits()
|
||||||
|
self.calc_input_bits()
|
||||||
|
total = self.param_bits + self.forward_backward_bits + self.input_bits
|
||||||
|
|
||||||
|
total_megabytes = (total/8)/(1024**2)
|
||||||
|
return total_megabytes, total
|
Loading…
Reference in New Issue