{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "my_list = [1,2,3]" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "numpy.ndarray" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "type(np.array(my_list))" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "arr = np.array(my_list)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1, 2, 3])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.arange(0,10)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0, 2, 4, 6, 8, 10])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.arange(0,11,2)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0., 0., 0., 0., 0.])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.zeros(5)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[0., 0., 0., 0., 0.],\n", " [0., 0., 0., 0., 0.],\n", " [0., 0., 0., 0., 0.]])" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.zeros((3,5))" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0. , 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9, 11. ])" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.linspace(0,11,11)" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[7, 3, 7],\n", " [8, 3, 2],\n", " [1, 9, 0]])" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.random.randint(0,10,(3,3))" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([95, 11, 81, 70, 63, 87, 75, 9, 77, 40])" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.random.seed(101)\n", "\n", "np.random.randint(0,100,10)" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 4, 63, 40, 60, 92, 64, 5, 12, 93, 40])" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.random.randint(0,100,10)" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "np.random.seed(101)\n", "\n", "arr = np.random.randint(0,100,10)\n" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([95, 11, 81, 70, 63, 87, 75, 9, 77, 40])" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "95" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr.max()" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "9" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr.min()" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr.argmax()" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[95, 11, 81, 70, 63],\n", " [87, 75, 9, 77, 40]])" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" } ], "source": [ "arr.reshape(2,5)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [], "source": [ "mat = np.arange(0,100).reshape(10,10)" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],\n", " [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],\n", " [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],\n", " [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],\n", " [40, 41, 42, 43, 44, 45, 46, 47, 48, 49],\n", " [50, 51, 52, 53, 54, 55, 56, 57, 58, 59],\n", " [60, 61, 62, 63, 64, 65, 66, 67, 68, 69],\n", " [70, 71, 72, 73, 74, 75, 76, 77, 78, 79],\n", " [80, 81, 82, 83, 84, 85, 86, 87, 88, 89],\n", " [90, 91, 92, 93, 94, 95, 96, 97, 98, 99]])" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mat" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "43" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mat[4,3]" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0, 10, 20, 30, 40, 50, 60, 70, 80, 90])" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mat[:,0]" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([50, 51, 52, 53, 54, 55, 56, 57, 58, 59])" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mat[5,:]" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[ 0, 1, 2],\n", " [10, 11, 12],\n", " [20, 21, 22]])" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mat[0:3,0:3]" ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [], "source": [ "my_filter = mat > 50" ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,\n", " 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,\n", " 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "mat[my_filter]" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "def find_max(nums):\n", " max_num = float(\"-inf\") # smaller than all other numbers\n", " for num in nums:\n", " if num > max_num:\n", " # (Fill in the missing line here)\n", " max_num = num\n", " return max_num" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "30.1" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "find_max([10.0,30.1,21.5])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }