{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import torch" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import torchvision" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "False" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "torch.cuda.is_available()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Torch tensors" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([2, 2, 1])\n" ] } ], "source": [ "# This is a 1D tensor\n", "a = torch.tensor([2,2,1])\n", "print(a)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[ 2, 3, 4],\n", " [ 1, 2, 3],\n", " [ 0, 8, 7],\n", " [10, 11, 12]])\n" ] } ], "source": [ "# This is a 2D tensor\n", "b = torch.tensor([[2,3,4],[1,2,3],[0,8,7],[10,11,12]])\n", "print(b)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "torch.Size([3])\n", "torch.Size([3])\n", "torch.Size([4, 3])\n", "torch.Size([4, 3])\n" ] } ], "source": [ "# the size of a tensor\n", "print(a.shape)\n", "print(a.size())\n", "print(b.shape)\n", "print(b.size())" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4\n" ] } ], "source": [ "# get the number of rows\n", "print(b.shape[0])" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [], "source": [ "c = torch.FloatTensor([[2,3,4],[1,2,3],[0,8,7],[10,11,12]])" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "d = torch.DoubleTensor([[2,3,4],[1,2,3],[0,8,7],[10,11,12]])" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[ 2., 3., 4.],\n", " [ 1., 2., 3.],\n", " [ 0., 8., 7.],\n", " [10., 11., 12.]])\n", "torch.float32\n" ] } ], "source": [ "print(c)\n", "print(c.dtype)" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[ 2., 3., 4.],\n", " [ 1., 2., 3.],\n", " [ 0., 8., 7.],\n", " [10., 11., 12.]], dtype=torch.float64)\n", "torch.float64\n" ] } ], "source": [ "print(d)\n", "print(d.dtype)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor(5.2500)\n" ] } ], "source": [ "print(c.mean())" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor(5.2500, dtype=torch.float64)\n" ] } ], "source": [ "print(d.mean())" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor(4.1588)\n" ] } ], "source": [ "print(c.std())" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor(4.1588, dtype=torch.float64)\n" ] } ], "source": [ "print(d.std())" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[ 2],\n", " [ 3],\n", " [ 4],\n", " [ 1],\n", " [ 2],\n", " [ 3],\n", " [ 0],\n", " [ 8],\n", " [ 7],\n", " [10],\n", " [11],\n", " [12]])\n", "tensor([ 2, 3, 4, 1, 2, 3, 0, 8, 7, 10, 11, 12])\n", "tensor([[ 2, 3, 4, 1],\n", " [ 2, 3, 0, 8],\n", " [ 7, 10, 11, 12]])\n", "tensor([[ 2, 3, 4, 1, 2, 3, 0, 8, 7, 10, 11, 12]])\n", "torch.Size([1, 12])\n", "\n", "\n", "\n", "\n", "tensor([[[ 2.3594, 0.3172, -2.0944, 0.5019],\n", " [ 0.4300, 0.4082, -0.1532, 0.6677],\n", " [-1.0891, 1.3434, -0.2586, -1.2845]],\n", "\n", " [[-2.2463, -0.6665, 0.5781, 1.1152],\n", " [-1.9292, -0.5129, -0.2301, -0.1059],\n", " [-0.5839, 2.9470, -0.6610, 1.1021]]])\n", "tensor([[ 2.3594, 0.3172, -2.0944, 0.5019, 0.4300, 0.4082, -0.1532, 0.6677,\n", " -1.0891, 1.3434, -0.2586, -1.2845],\n", " [-2.2463, -0.6665, 0.5781, 1.1152, -1.9292, -0.5129, -0.2301, -0.1059,\n", " -0.5839, 2.9470, -0.6610, 1.1021]])\n", "tensor([[ 2.3594, 0.3172, -2.0944, 0.5019, 0.4300, 0.4082, -0.1532, 0.6677,\n", " -1.0891, 1.3434, -0.2586, -1.2845],\n", " [-2.2463, -0.6665, 0.5781, 1.1152, -1.9292, -0.5129, -0.2301, -0.1059,\n", " -0.5839, 2.9470, -0.6610, 1.1021]])\n" ] } ], "source": [ "print(b.view(-1,1))\n", "print(b.view(12))\n", "print(b.view(-1,4))\n", "\n", "b = b.view(1,-1)\n", "print(b)\n", "print(b.shape)\n", "print(\"\\n\")\n", "#this is the format of a Tensor (channels,rows,columns)\n", "three_dim = torch.randn(2,3,4)\n", "print(\"\\n\")\n", "print(three_dim)\n", "print(three_dim.view(2,12))\n", "print(three_dim.view(2,-1))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }