{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import torch" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import torchvision" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "torch.cuda.is_available()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[0.2504, 0.6128, 0.9066, 0.9701],\n", " [0.9145, 0.5638, 0.2492, 0.8657],\n", " [0.9521, 0.5454, 0.6647, 0.9666],\n", " [0.9705, 0.8375, 0.9598, 0.4804]])\n" ] } ], "source": [ "r = torch.rand(4,4)\n", "print(r)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[-0.6323, -0.4558, -0.9853, 1.5795],\n", " [-1.5415, 0.3864, -0.0094, 0.4048],\n", " [ 1.2190, 0.7174, 0.0796, 0.0580],\n", " [-0.8419, 1.5195, 0.9428, 0.5261]])\n", "torch.float32\n" ] } ], "source": [ "r2 = torch.randn(4,4)\n", "print(r2)\n", "print(r2.dtype)" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([7, 9, 9, 8, 8])\n", "torch.int64\n" ] } ], "source": [ "in_array = torch.randint(6,10,(5,))\n", "print(in_array)\n", "print(in_array.dtype)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[6, 6, 7],\n", " [9, 7, 6],\n", " [9, 8, 6]])\n" ] } ], "source": [ "in_array_2 = torch.randint(6,10,(3,3))\n", "print(in_array_2)" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5\n", "9\n" ] } ], "source": [ "print(torch.numel(in_array))\n", "print(torch.numel(in_array_2))" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[0, 0, 0],\n", " [0, 0, 0],\n", " [0, 0, 0]])\n", "torch.int64\n", "tensor([[1., 1., 1.],\n", " [1., 1., 1.],\n", " [1., 1., 1.]])\n", "torch.float32\n" ] } ], "source": [ "z = torch.zeros(3,3, dtype=torch.long)\n", "print(z)\n", "print(z.dtype)\n", "o = torch.ones(3,3)\n", "print(o)\n", "print(o.dtype)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[ 0.0830, -0.5093, -0.0874, 0.4360],\n", " [-0.4503, 1.4857, -0.9082, 0.9302],\n", " [-1.1958, 0.2207, 1.0333, 0.1410],\n", " [-0.0071, -2.7461, 0.8460, 0.8057]], dtype=torch.float64)\n" ] } ], "source": [ "r2_like = torch.randn_like(r2, dtype=torch.double)\n", "print(r2_like)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[-0.3819, 0.1570, -0.0787, 2.5496],\n", " [-0.6270, 0.9503, 0.2398, 1.2705],\n", " [ 2.1711, 1.2629, 0.7444, 1.0246],\n", " [ 0.1286, 2.3570, 1.9026, 1.0065]])\n" ] } ], "source": [ "add_result = torch.add(r,r2)\n", "print(add_result)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "torch.Size([4, 4])" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "add_result.size()" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[-0.3819, 0.1570, -0.0787, 2.5496],\n", " [-0.6270, 0.9503, 0.2398, 1.2705],\n", " [ 2.1711, 1.2629, 0.7444, 1.0246],\n", " [ 0.1286, 2.3570, 1.9026, 1.0065]])\n" ] } ], "source": [ "# this function reassings the value to r2\n", "r2.add_(r)\n", "print(r2)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([0.1570, 0.9503, 1.2629, 2.3570])\n", "tensor([[-0.3819, 0.1570],\n", " [-0.6270, 0.9503],\n", " [ 2.1711, 1.2629],\n", " [ 0.1286, 2.3570]])\n", "tensor([[-0.3819, 0.1570, -0.0787, 2.5496],\n", " [-0.6270, 0.9503, 0.2398, 1.2705],\n", " [ 2.1711, 1.2629, 0.7444, 1.0246]])\n", "tensor(1.0246)\n", "1.0245939493179321\n", "tensor([2.1711, 1.2629, 0.7444, 1.0246])\n" ] } ], "source": [ "print(r2[:,1])\n", "print(r2[:,:2])\n", "print(r2[:3,:])\n", "num_ten = r2[2,3]\n", "print(num_ten)\n", "print(num_ten.item())\n", "print(r2[2,:])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }