{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/eddie/.pyenv/versions/3.7.6/envs/pytorch/lib/python3.7/site-packages/pandas/compat/__init__.py:117: UserWarning: Could not import the lzma module. Your installed Python is incomplete. Attempting to use lzma compression will result in a RuntimeError.\n", " warnings.warn(msg)\n" ] } ], "source": [ "import numpy as np\n", "import torch\n", "import torch.nn as nn\n", "import pandas as pd\n", "from sklearn.preprocessing import StandardScaler\n", "from torch.utils.data import Dataset" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "# Load the data set using pandas\n", "data = pd.read_csv('diabetes.csv')\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Number of times pregnant | \n", "Plasma glucose concentration | \n", "Diastolic blood pressure | \n", "Triceps skin fold thickness | \n", "2-Hour serum insulin | \n", "Body mass index | \n", "Age | \n", "Class | \n", "
---|---|---|---|---|---|---|---|---|
0 | \n", "6 | \n", "148 | \n", "72 | \n", "35 | \n", "0 | \n", "33.6 | \n", "50 | \n", "positive | \n", "
1 | \n", "1 | \n", "85 | \n", "66 | \n", "29 | \n", "0 | \n", "26.6 | \n", "31 | \n", "negative | \n", "
2 | \n", "8 | \n", "183 | \n", "64 | \n", "0 | \n", "0 | \n", "23.3 | \n", "32 | \n", "positive | \n", "
3 | \n", "1 | \n", "89 | \n", "66 | \n", "23 | \n", "94 | \n", "28.1 | \n", "21 | \n", "negative | \n", "
4 | \n", "0 | \n", "137 | \n", "40 | \n", "35 | \n", "168 | \n", "43.1 | \n", "33 | \n", "positive | \n", "