pytorch-stuff/pytorch_modelsize.py

83 lines
2.5 KiB
Python
Executable File

import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
class SizeEstimator(object):
def __init__(self, model, input_size=(1,1,32,32), bits=32):
'''
Estimates the size of PyTorch models in memory
for a given input size
'''
self.model = model
self.input_size = input_size
self.bits = 32
return
def get_parameter_sizes(self):
'''Get sizes of all parameters in `model`'''
mods = list(self.model.modules())
sizes = []
for i in range(1,len(mods)):
m = mods[i]
p = list(m.parameters())
for j in range(len(p)):
sizes.append(np.array(p[j].size()))
self.param_sizes = sizes
return
def get_output_sizes(self):
'''Run sample input through each layer to get output sizes'''
input_ = Variable(torch.FloatTensor(*self.input_size), volatile=True)
mods = list(self.model.modules())
out_sizes = []
for i in range(1, len(mods)):
m = mods[i]
out = m(input_)
out_sizes.append(np.array(out.size()))
input_ = out
self.out_sizes = out_sizes
return
def calc_param_bits(self):
'''Calculate total number of bits to store `model` parameters'''
total_bits = 0
for i in range(len(self.param_sizes)):
s = self.param_sizes[i]
bits = np.prod(np.array(s))*self.bits
total_bits += bits
self.param_bits = total_bits
return
def calc_forward_backward_bits(self):
'''Calculate bits to store forward and backward pass'''
total_bits = 0
for i in range(len(self.out_sizes)):
s = self.out_sizes[i]
bits = np.prod(np.array(s))*self.bits
total_bits += bits
# multiply by 2 for both forward AND backward
self.forward_backward_bits = (total_bits*2)
return
def calc_input_bits(self):
'''Calculate bits to store input'''
self.input_bits = np.prod(np.array(self.input_size))*self.bits
return
def estimate_size(self):
'''Estimate model size in memory in megabytes and bits'''
self.get_parameter_sizes()
self.get_output_sizes()
self.calc_param_bits()
self.calc_forward_backward_bits()
self.calc_input_bits()
total = self.param_bits + self.forward_backward_bits + self.input_bits
total_megabytes = (total/8)/(1024**2)
return total_megabytes, total