reinforcement/comparing_epsilons.jl

74 lines
1.6 KiB
Julia
Raw Normal View History

2021-01-02 12:10:47 +00:00
using Distributions
using Random
using Plots
2021-01-02 13:04:08 +00:00
Random.seed!(0);
2021-01-02 12:10:47 +00:00
mutable struct BanditArm
m::Number #the win rate
m_estimate::Number #How to estimate the win rate
N::Number #Number of samples
BanditArm(m) = new(m,0,0)
end
function pull(ban::BanditArm)
return rand(Normal(0,1)) + ban.m
end
function update(ban::BanditArm, x::Number) #x is a sample number
ban.N += 1
ban.m_estimate = ((1 - 1/ban.N) * ban.m_estimate) + (1 / (ban.N * x))
end
function run_experiment(m1::Number,m2::Number,m3::Number,ϵ::Number,N::Number)
bandits = [BanditArm(m1),BanditArm(m2),BanditArm(m3)]
means = [m1,m2,m3]
true_best = argmax(means)
count_suboptimal = 0
data = Array{Number}(undef,N)
for i in 1:N
p = rand()
if p < ϵ
j = rand(1:size(bandits)[1])
else
j = argmax([b.m_estimate for b in bandits])
end
x = pull(bandits[j])
update(bandits[j],x)
if j != true_best
count_suboptimal += 1
end
data[i] = x
end
gr();
cumulative_average = cumsum(data) ./ Array(1:N)
plot(cumulative_average,xaxis=:log)
plot!(ones(N) .* m1,xaxis=:log)
plot!(ones(N) .* m2,xaxis=:log)
display(plot!(ones(N) .* m3,xaxis=:log))
for b in bandits
println(b.m_estimate)
end
println("Perccent suboptimal for ϵ = : ", count_suboptimal / N)
return cumulative_average
end
m1 = 1.5
m2 = 2.5
m3 = 3.5
c_1 = run_experiment(m1,m2,m3,0.1,100000);
c_05 = run_experiment(m1,m2,m3,0.05,100000);
c_01 = run_experiment(m1,m2,m3,0.01,100000);
2021-01-02 13:04:08 +00:00
plot(c_1)
plot!(c_05)
2021-01-02 12:10:47 +00:00
plot!(c_01)