CHanged to Julia lang

This commit is contained in:
Eduardo Cueto Mendoza 2020-12-27 15:15:46 +00:00
parent 7c1f5de6d5
commit 5bdb53b360
2 changed files with 48 additions and 66 deletions

48
cours_ex1.jl Normal file
View File

@ -0,0 +1,48 @@
using LinearAlgebra
using Distributions
using Random
using Zygote
using Plots
Random.seed!(0);
function normalgenerator(amount::Number,μ::Number,σ::Number,lowerbound::Number=0,upperbound::Number=1)
return rand(Truncated(Normal(μ,σ),lowerbound,upperbound),amount)
end
function noisyline(intercept::Number,slope::Number,samples::Number,μ::Number,σ::Number,lb::Number=0,ub::Number=1)
noise = normalgenerator(samples,μ,σ,lb,ub)
exes = Array{Float64,1}(undef,samples)
for i in 1:samples
exes[i] = i
end
line = slope .* exes .+ intercept
y = noise .+ line
w = ones(samples)
X = hcat(exes,w)
return X,y
end
function MSE(X::Array,y::Array,w::Array)
return mean((y - X * w).^2)
end
function gradient_descent(X::Array,y::Array,α::Number,w::Array,iter::Number)
costs = Array{Float64,1}(undef,iter)
for i in 1:iter
costs[i] = MSE(X,y,w)
∇X, ∇y, ∇w = gradient(MSE,X,y,w)
w = w - α * ∇w
end
return w,costs
end
function get_res_line(X::Array,result::Array)
return result[1] .* X[:,1] .+ result[2]
end
X,y = noisyline(2,4,100,0,1);
N,D = size(X);
w = ones(D);
pred,cost = gradient_descent(X,y,0.0001,w,6);

View File

@ -1,66 +0,0 @@
import random
import numpy as np
from numpy import arange
import matplotlib.pyplot as plt
random.seed(0)
def line_w_gauss_noise(inter,slope,noise,numPoints):
x = np.zeros(shape=(numPoints, 2))
y = np.zeros(shape=numPoints)
for i in range(0, numPoints):
x[i][0] = i
x[i][1] = 1
y[i] = (i + inter) + random.uniform(0, noise) * slope
return x, y
def MSE(x,y,weights):
N,D = np.shape(x)
x_T = x.transpose()
y_hat = np.dot(weights,x_T)
return np.sum((y - y_hat)**2) / N
def dMSE(x,y,weights):
N = len(x)
inter = np.sum(np.dot(np.dot(x[:,1],weights[1]) - y,x[:,1])) * (2/N)
slope = np.sum(np.dot(x[:,0],weights[0]) - y,) * (2/N)
new_weight = np.array([slope,inter])
return new_weight
def gradient_desscent(x,y,alpha,weights,iter):
losses = list()
costs = list()
for n in range(iter):
cost = MSE(x,y,weights)
loss = np.sum(y - np.dot(x,weights))
losses.append(loss)
costs.append(cost)
print(cost)
print(loss)
print(n)
if np.abs(losses[n]) > np.abs(losses[n-1]):
break
weights = weights - (alpha * dMSE(x,y,weights))
return weights,costs,losses
if __name__ == '__main__':
x,y = line_w_gauss_noise(1,2,5,100)
num_var = len(x.transpose())
w = np.ones(num_var)
result,cost,loss = gradient_desscent(x,y,0.001,w,80)
print(result)
y_hat = []
for i in x[:,0]:
y_hat.append(result[1]+(result[0]*i))
plt.scatter(x[:,0],y)
plt.plot(x[:,0],y_hat)
plt.show()
#plt.plot(cost)
#plt.plot(loss)
#plt.show()