Efficiency-of-Neural-Archit.../arguments.py

28 lines
1.3 KiB
Python
Raw Normal View History

2023-06-01 08:20:51 +00:00
import argparse
from argparse import ArgumentParser
# Construct an argument parser
all_args = argparse.ArgumentParser()
def makeArguments(arguments: ArgumentParser) -> dict:
all_args.add_argument("-b", "--Bayesian", action="store", dest="b",
2023-06-30 10:09:54 +00:00
type=int, choices=range(1, 8),
help="Bayesian model of size x")
2023-06-01 08:20:51 +00:00
all_args.add_argument("-f", "--Frequentist", action="store", dest="f",
2023-06-30 10:09:54 +00:00
type=int, choices=range(1, 8),
help="Frequentist model of size x")
2023-06-01 08:20:51 +00:00
all_args.add_argument("-E", "--EarlyStopping", action="store_true",
2023-06-30 10:09:54 +00:00
help="Early Stopping criteria")
2023-06-01 08:20:51 +00:00
all_args.add_argument("-e", "--EnergyBound", action="store_true",
2023-06-30 10:09:54 +00:00
help="Energy Bound criteria")
2023-06-01 08:20:51 +00:00
all_args.add_argument("-a", "--AccuracyBound", action="store_true",
2023-06-30 10:09:54 +00:00
help="Accuracy Bound criteria")
all_args.add_argument("-s", "--Save", action="store_true",
help="Save model")
all_args.add_argument('--net_type', default='lenet', type=str,
help='model = [lenet/AlexNet/3Conv3FC]')
all_args.add_argument('--dataset', default='CIFAR10', type=str,
help='dataset = [MNIST/CIFAR10/CIFAR100]')
2023-06-01 08:20:51 +00:00
return vars(all_args.parse_args())