Efficiency-of-Neural-Archit.../stopping_crit.py

46 lines
1.4 KiB
Python
Raw Normal View History

import pickle
from time import sleep
from gpu_power_func import total_watt_consumed
with (open("configuration.pkl", "rb")) as file:
while True:
try:
cfg = pickle.load(file)
except EOFError:
break
def earlyStopping(early_stopping: list, train_acc: float, epoch: int, sensitivity: float=1e-9):
2023-06-01 08:20:51 +00:00
early_stopping.append(train_acc)
if epoch % 4 == 0 and epoch > 0:
print("Value 1: {} > Value 2: {} > \
Value 3: {}".format(early_stopping[0], \
abs(early_stopping[1]-sensitivity), \
abs(early_stopping[2]-sensitivity)))
if train_acc > 0.5:
if early_stopping[0] > abs(early_stopping[1]-sensitivity) and \
early_stopping[1] > abs(early_stopping[2]-sensitivity):
print("Stopping Early")
return 1
del early_stopping[:]
return 0
2023-06-01 08:20:51 +00:00
def energyBound(threshold: float=100000.0):
try:
energy = total_watt_consumed(cfg["pickle_path"])
except Exception as e:
sleep(3)
energy = total_watt_consumed(cfg["pickle_path"])
print("Energy used: {}".format(energy))
if energy > threshold:
print("Energy bound achieved")
return 1
return 0
2023-06-01 08:20:51 +00:00
2023-06-01 08:20:51 +00:00
def accuracyBound(train_acc: float, threshold: float=0.99):
if train_acc >= threshold:
print("Accuracy bound achieved")
return 1
return 0