2024-04-25 13:14:19 +00:00
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
import functions as aux
|
|
|
|
|
|
|
|
eff_df = aux.load_pickle("efficiency_data.pkl")
|
|
|
|
|
2024-04-26 11:13:11 +00:00
|
|
|
# bayes_cifar_entropy = aux.load_pickle("bayes_data_cifar_ne.pkl")
|
|
|
|
# lenet_mnist_entropy = aux.load_pickle("lenet_data_mnist_ne.pkl")
|
|
|
|
entropy_data = aux.load_pickle("entropy_data.pkl")
|
2024-04-25 13:14:19 +00:00
|
|
|
|
|
|
|
bayes_keys = ['conv1.W_mu', 'conv1.W_rho', 'conv1.bias_mu', 'conv1.bias_rho',
|
|
|
|
'conv2.W_mu', 'conv2.W_rho', 'conv2.bias_mu', 'conv2.bias_rho',
|
|
|
|
'fc1.W_mu', 'fc1.W_rho', 'fc1.bias_mu', 'fc1.bias_rho',
|
|
|
|
'fc2.W_mu', 'fc2.W_rho', 'fc2.bias_mu', 'fc2.bias_rho',
|
|
|
|
'fc3.W_mu', 'fc3.W_rho', 'fc3.bias_mu', 'fc3.bias_rho']
|
|
|
|
|
|
|
|
lenet_keys = ['conv1.weight', 'conv1.bias', 'conv2.weight', 'conv2.bias',
|
|
|
|
'fc1.weight', 'fc1.bias', 'fc2.weight', 'fc2.bias', 'fc3.weight',
|
|
|
|
'fc3.bias']
|
|
|
|
|
|
|
|
for size in range(1, 8):
|
2024-09-16 11:39:14 +00:00
|
|
|
# if size != 3:
|
|
|
|
plt.plot(eff_df['MNIST']['LeNet'][size],
|
2024-07-30 13:14:18 +00:00
|
|
|
label='Efficiency size {}'.format(size))
|
2024-09-16 11:39:14 +00:00
|
|
|
plt.plot(entropy_data['MNIST']['LeNet'][size],
|
2024-07-30 13:14:18 +00:00
|
|
|
label='Entropy size {}'.format(size))
|
2024-04-25 13:14:19 +00:00
|
|
|
|
2024-07-30 13:14:18 +00:00
|
|
|
plt.legend(loc='upper right')
|
|
|
|
# plt.legend(loc='lower right')
|
2024-04-25 13:14:19 +00:00
|
|
|
plt.show()
|