Entropy_Data_Processing/general_plots_noisy.py

37 lines
1.3 KiB
Python
Raw Permalink Normal View History

2024-09-16 11:39:14 +00:00
import matplotlib.pyplot as plt
import functions as aux
2024-10-04 11:11:49 +00:00
model_type = 'BCNN' # BCNN or LeNet
dataset = 'MNIST' # MNIST or CIFAR
2024-09-16 11:39:14 +00:00
eff_df = aux.load_pickle("efficiency_data.pkl")
entropy_data_noise = aux.load_pickle("entropy_data_noisy.pkl")
entropy_data = aux.load_pickle("entropy_data.pkl")
bayes_keys = ['conv1.W_mu', 'conv1.W_rho', 'conv1.bias_mu', 'conv1.bias_rho',
'conv2.W_mu', 'conv2.W_rho', 'conv2.bias_mu', 'conv2.bias_rho',
'fc1.W_mu', 'fc1.W_rho', 'fc1.bias_mu', 'fc1.bias_rho',
'fc2.W_mu', 'fc2.W_rho', 'fc2.bias_mu', 'fc2.bias_rho',
'fc3.W_mu', 'fc3.W_rho', 'fc3.bias_mu', 'fc3.bias_rho']
lenet_keys = ['conv1.weight', 'conv1.bias', 'conv2.weight', 'conv2.bias',
'fc1.weight', 'fc1.bias', 'fc2.weight', 'fc2.bias', 'fc3.weight',
'fc3.bias']
all_noises = [0.1, 0.25, 0.5, 0.75, 0.99, 'raleigh', 'erlang', 'exponential', 'uniform', 'impulse']
2024-09-16 11:39:14 +00:00
for size in range(1, 2):
2024-10-04 11:11:49 +00:00
#plt.plot(eff_df[dataset][model_type][size],
# label='Efficiency')
2024-09-16 11:39:14 +00:00
plt.plot(entropy_data[dataset][model_type][size],
label='Entropy at noise 0.0')
for noise in all_noises:
plt.plot(entropy_data_noise[dataset][model_type][noise],
label='Entropy at noise {}'.format(noise))
plt.legend(loc='upper right')
# plt.legend(loc='lower right')
plt.show()