Flux.jl/test/cuda/curnn.jl

47 lines
1.3 KiB
Julia
Raw Normal View History

2018-09-11 11:28:05 +00:00
using Flux, CuArrays, Test
2018-06-22 12:49:18 +00:00
# @testset "RNN" begin
# @testset for R in [RNN, GRU, LSTM]
# rnn = R(10, 5)
# curnn = mapleaves(gpu, rnn)
# @testset for batch_size in (1, 5)
# Flux.reset!(rnn)
# Flux.reset!(curnn)
# x = batch_size == 1 ?
# param(rand(10)) :
# param(rand(10,batch_size))
# cux = gpu(x)
# y = (rnn(x); rnn(x))
# cuy = (curnn(cux); curnn(cux))
#
# @test y.data ≈ collect(cuy.data)
# @test haskey(Flux.CUDA.descs, curnn.cell)
#
# Δ = randn(size(y))
#
# Flux.back!(y, Δ)
# Flux.back!(cuy, gpu(Δ))
#
# @test x.grad ≈ collect(cux.grad)
# @test rnn.cell.Wi.grad ≈ collect(curnn.cell.Wi.grad)
# @test rnn.cell.Wh.grad ≈ collect(curnn.cell.Wh.grad)
# @test rnn.cell.b.grad ≈ collect(curnn.cell.b.grad)
# @test rnn.cell.h.grad ≈ collect(curnn.cell.h.grad)
# if isdefined(rnn.cell, :c)
# @test rnn.cell.c.grad ≈ collect(curnn.cell.c.grad)
# end
#
# Flux.reset!(rnn)
# Flux.reset!(curnn)
# ohx = batch_size == 1 ?
# Flux.onehot(rand(1:10), 1:10) :
# Flux.onehotbatch(rand(1:10, batch_size), 1:10)
# cuohx = gpu(ohx)
# y = (rnn(ohx); rnn(ohx))
# cuy = (curnn(cuohx); curnn(cuohx))
#
# @test y.data ≈ collect(cuy.data)
# end
# end
# end