57 lines
1.4 KiB
Julia
57 lines
1.4 KiB
Julia
![]() |
type Model
|
|||
|
session::Session
|
|||
|
inputs::Vector{Tensor}
|
|||
|
graph::Tensor
|
|||
|
grad::Tensor
|
|||
|
end
|
|||
|
|
|||
|
function tf(model)
|
|||
|
sess = Session(Graph())
|
|||
|
input = placeholder(Float32)
|
|||
|
g = graph(model, input)
|
|||
|
run(sess, initialize_all_variables())
|
|||
|
Model(sess, [input], g, gradients(g, input))
|
|||
|
end
|
|||
|
|
|||
|
batch(x) = Batch((x,))
|
|||
|
|
|||
|
function (m::Model)(args::Batch...)
|
|||
|
@assert length(args) == length(m.inputs)
|
|||
|
run(m.session, m.graph, Dict(zip(m.inputs, args)))
|
|||
|
end
|
|||
|
|
|||
|
(m::Model)(args...) = m(map(batch, args)...)
|
|||
|
|
|||
|
function Flux.back!(m::Model, Δ, args...)
|
|||
|
@assert length(args) == length(m.inputs)
|
|||
|
# TODO: keyword arguments to `gradients`
|
|||
|
run(m.session, m.grad, Dict(zip(m.inputs, args)))
|
|||
|
end
|
|||
|
|
|||
|
function Flux.update!(m::Model)
|
|||
|
error("update! is not yet supported on TensorFlow models")
|
|||
|
end
|
|||
|
|
|||
|
import Juno: info
|
|||
|
|
|||
|
function Flux.train!(m::Model, train, test=[]; epoch = 1, η = 0.1,
|
|||
|
loss = (y, y′) -> reduce_sum((y - y′).^2)/2,
|
|||
|
opt = TensorFlow.train.GradientDescentOptimizer(η))
|
|||
|
i = 0
|
|||
|
Y = placeholder(Float32)
|
|||
|
Loss = loss(m.graph, Y)
|
|||
|
minimize_op = TensorFlow.train.minimize(opt, Loss)
|
|||
|
for e in 1:epoch
|
|||
|
info("Epoch $e\n")
|
|||
|
@progress for (x, y) in train
|
|||
|
y, cur_loss, _ = run(m.session, vcat(m.graph, Loss, minimize_op),
|
|||
|
Dict(m.inputs[1]=>batch(x), Y=>batch(y)))
|
|||
|
if i % 5000 == 0
|
|||
|
@show y
|
|||
|
@show accuracy(m, test)
|
|||
|
end
|
|||
|
i += 1
|
|||
|
end
|
|||
|
end
|
|||
|
end
|