2017-09-01 21:06:51 +00:00
|
|
|
|
call(f, xs...) = f(xs...)
|
|
|
|
|
|
2017-09-03 21:10:04 +00:00
|
|
|
|
function optimiser(ps, fs...)
|
|
|
|
|
ps = [Param(p) for p in ps]
|
2017-09-01 21:06:51 +00:00
|
|
|
|
fs = map(ps) do p
|
|
|
|
|
os = map(f -> f(p), fs)
|
|
|
|
|
() -> foreach(call, os)
|
|
|
|
|
end
|
|
|
|
|
() -> foreach(call, fs)
|
|
|
|
|
end
|
|
|
|
|
|
2017-10-18 11:07:43 +00:00
|
|
|
|
"""
|
|
|
|
|
SGD(params, η = 1; decay = 0)
|
|
|
|
|
|
|
|
|
|
Classic gradient descent optimiser. For each parameter `p` and its
|
|
|
|
|
gradient `δp`, this runs `p -= η*δp`.
|
|
|
|
|
|
|
|
|
|
Supports decayed learning rate decay if the `decay` argument is provided.
|
|
|
|
|
"""
|
|
|
|
|
SGD(ps, η = 1; decay = 0) =
|
|
|
|
|
optimiser(ps, p -> invdecay(p, decay), p -> descent(p, η))
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
Momentum(params, ρ, decay = 0)
|
|
|
|
|
|
|
|
|
|
SGD with momentum `ρ` and optional learning rate decay.
|
|
|
|
|
"""
|
|
|
|
|
Momentum(ps, ρ; decay = 0) =
|
|
|
|
|
optimiser(ps, p -> momentum(p, ρ), p -> invdecay(p, decay), p -> descent(p, 1))
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
Nesterov(params, ρ, decay = 0)
|
|
|
|
|
|
|
|
|
|
SGD with Nesterov momentum `ρ` and optional learning rate decay.
|
|
|
|
|
"""
|
|
|
|
|
Nesterov(ps, ρ; decay = 0) =
|
|
|
|
|
optimiser(ps, p -> nesterov(p, ρ), p -> invdecay(p, decay), p -> descent(p, 1))
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
RMSProp(params; η = 0.001, ρ = 0.9, ϵ = 1e-8, decay = 0)
|
|
|
|
|
|
|
|
|
|
[RMSProp](http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
|
|
|
|
|
optimiser. Parameters other than learning rate don't need tuning. Often a good
|
|
|
|
|
choice for recurrent networks.
|
|
|
|
|
"""
|
2017-10-18 16:07:49 +00:00
|
|
|
|
RMSProp(ps, η = 0.001; ρ = 0.9, ϵ = 1e-8, decay = 0) =
|
2017-10-18 11:07:43 +00:00
|
|
|
|
optimiser(ps, p -> rmsprop(p; η = η, ρ = ρ, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1))
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
ADAM(params; η = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0)
|
|
|
|
|
|
|
|
|
|
[ADAM](https://arxiv.org/abs/1412.6980v8) optimiser.
|
|
|
|
|
"""
|
2017-10-18 16:44:21 +00:00
|
|
|
|
ADAM(ps, η = 0.001; β1 = 0.9, β2 = 0.999, ϵ = 1e-08, decay = 0) =
|
2017-10-18 11:07:43 +00:00
|
|
|
|
optimiser(ps, p -> adam(p; η = η, β1 = β1, β2 = β2, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1))
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
ADAGrad(params; η = 0.01, ϵ = 1e-8, decay = 0)
|
|
|
|
|
|
|
|
|
|
[ADAGrad](http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) optimiser.
|
|
|
|
|
Parameters don't need tuning.
|
|
|
|
|
"""
|
|
|
|
|
ADAGrad(ps; η = 0.01, ϵ = 1e-8, decay = 0) =
|
|
|
|
|
optimiser(ps, p -> adagrad(p; η = η, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1))
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
ADADelta(params; η = 0.01, ρ = 0.95, ϵ = 1e-8, decay = 0)
|
|
|
|
|
|
|
|
|
|
[ADADelta](http://arxiv.org/abs/1212.5701) optimiser. Parameters don't need
|
|
|
|
|
tuning.
|
|
|
|
|
"""
|
|
|
|
|
ADADelta(ps; η = 0.01, ρ = 0.95, ϵ = 1e-8, decay = 0) =
|
|
|
|
|
optimiser(ps, p -> adadelta(p; ρ = ρ, ϵ = ϵ), p -> invdecay(p, decay), p -> descent(p, 1))
|