Flux.jl/src/utils.jl

161 lines
3.7 KiB
Julia
Raw Normal View History

2017-05-01 15:57:51 +00:00
# Arrays
nfan() = 1, 1 #fan_in, fan_out
nfan(n) = 1, n #A vector is treated as a n×1 matrix
nfan(n_out, n_in) = n_in, n_out #In case of Dense kernels: arranged as matrices
nfan(dims...) = prod(dims[1:end-2]) .* (dims[end-1], dims[end]) #In case of convolution kernels
glorot_uniform(dims...) = (rand(Float32, dims...) .- 0.5f0) .* sqrt(24.0f0 / sum(nfan(dims...)))
glorot_normal(dims...) = randn(Float32, dims...) .* sqrt(2.0f0 / sum(nfan(dims...)))
2018-09-07 00:25:32 +00:00
ones(T::Type, dims...) = Base.ones(T, dims...)
zeros(T::Type, dims...) = Base.zeros(T, dims...)
ones(dims...) = Base.ones(Float32, dims...)
zeros(dims...) = Base.zeros(Float32, dims...)
2016-08-25 16:25:33 +00:00
2017-09-06 22:58:55 +00:00
unsqueeze(xs, dim) = reshape(xs, (size(xs)[1:dim-1]..., 1, size(xs)[dim:end]...))
2017-08-19 19:52:29 +00:00
stack(xs, dim) = cat(unsqueeze.(xs, dim)..., dims=dim)
unstack(xs, dim) = [copy(selectdim(xs, dim, i)) for i in 1:size(xs, dim)]
2017-05-01 15:57:51 +00:00
2017-10-18 16:07:58 +00:00
"""
chunk(xs, n)
Split `xs` into `n` parts.
```julia
julia> chunk(1:10, 3)
3-element Array{Array{Int64,1},1}:
[1, 2, 3, 4]
[5, 6, 7, 8]
[9, 10]
```
"""
chunk(xs, n) = collect(Iterators.partition(xs, ceil(Int, length(xs)/n)))
batchindex(xs, i) = (reverse(Base.tail(reverse(axes(xs))))..., i)
2017-10-15 22:44:40 +00:00
2018-02-17 11:19:14 +00:00
"""
frequencies(xs)
Count the number of times that each element of `xs` appears.
```julia
julia> frequencies(['a','b','b'])
Dict{Char,Int64} with 2 entries:
'b' => 2
'a' => 1
```
"""
function frequencies(xs)
fs = Dict{eltype(xs),Int}()
for x in xs
fs[x] = get(fs, x, 0) + 1
end
return fs
end
2018-02-28 14:25:32 +00:00
head(x::Tuple) = reverse(Base.tail(reverse(x)))
squeezebatch(x) = reshape(x, head(size(x)))
2017-10-18 15:21:15 +00:00
"""
batch(xs)
Batch the arrays in `xs` into a single array.
```julia
julia> batch([[1,2,3],[4,5,6]])
3×2 Array{Int64,2}:
1 4
2 5
3 6
```
"""
2017-10-15 22:44:40 +00:00
function batch(xs)
2017-10-18 15:21:15 +00:00
data = first(xs) isa AbstractArray ?
similar(first(xs), size(first(xs))..., length(xs)) :
Vector{eltype(xs)}(undef, length(xs))
2017-10-15 22:44:40 +00:00
for (i, x) in enumerate(xs)
data[batchindex(data, i)...] = x
end
return data
end
Base.rpad(v::AbstractVector, n::Integer, p) = [v; fill(p, max(n - length(v), 0))]
2017-10-18 15:21:15 +00:00
"""
batchseq(seqs, pad)
Take a list of `N` sequences, and turn them into a single sequence where each
item is a batch of `N`. Short sequences will be padded by `pad`.
```julia
julia> batchseq([[1, 2, 3], [4, 5]], 0)
3-element Array{Array{Int64,1},1}:
[1, 4]
[2, 5]
[3, 0]
```
"""
function batchseq(xs, pad = nothing, n = maximum(length(x) for x in xs))
2017-10-15 22:44:40 +00:00
xs_ = [rpad(x, n, pad) for x in xs]
[batch([xs_[j][i] for j = 1:length(xs_)]) for i = 1:n]
end
2017-05-01 15:57:51 +00:00
# Other
2017-05-01 12:46:23 +00:00
2017-08-18 00:04:50 +00:00
"""
Returns a function that when invoked, will only be triggered at most once
during `timeout` seconds. Normally, the throttled function will run
as much as it can, without ever going more than once per `wait` duration;
but if you'd like to disable the execution on the leading edge, pass
`leading=false`. To enable execution on the trailing edge, ditto.
"""
function throttle(f, timeout; leading=true, trailing=false)
cooldown = true
later = nothing
2017-12-13 18:24:56 +00:00
result = nothing
2017-08-18 00:04:50 +00:00
function throttled(args...; kwargs...)
yield()
if cooldown
if leading
2017-12-13 18:24:56 +00:00
result = f(args...; kwargs...)
2017-08-18 00:04:50 +00:00
else
later = () -> f(args...; kwargs...)
end
cooldown = false
2018-06-20 14:18:07 +00:00
@async try
2017-08-18 00:04:50 +00:00
while (sleep(timeout); later != nothing)
later()
later = nothing
end
finally
cooldown = true
end
elseif trailing
2017-12-13 18:24:56 +00:00
later = () -> (result = f(args...; kwargs...))
2017-08-18 00:04:50 +00:00
end
2017-12-13 18:24:56 +00:00
return result
2017-08-18 00:04:50 +00:00
end
end
2017-12-08 13:46:12 +00:00
2018-10-05 13:02:00 +00:00
"""
@jit ...
The `@jit` annotation can be applied to any code, and the code will be compiled
for performance.
@jit f(x) = @jit(x) + @jit(x)
Note that compilation happens regardless of the `@jit` macro, so it should only
be used for aesthetic purposes, or by recovering Python users.
"""
macro jit(ex)
esc(ex)
end