Flux.jl/docs/src/models/regularisation.md

67 lines
1.6 KiB
Markdown
Raw Normal View History

2018-02-09 19:00:26 +00:00
# Regularisation
Applying regularisation to model parameters is straightforward. We just need to
2018-08-29 22:34:41 +00:00
apply an appropriate regulariser, such as `norm`, to each model parameter and
2018-02-09 19:00:26 +00:00
add the result to the overall loss.
For example, say we have a simple regression.
```julia
using Flux: crossentropy
2018-02-09 19:00:26 +00:00
m = Dense(10, 5)
loss(x, y) = crossentropy(softmax(m(x)), y)
2018-02-09 19:00:26 +00:00
```
We can regularise this by taking the (L2) norm of the parameters, `m.W` and `m.b`.
```julia
2019-09-10 14:17:07 +00:00
using LinearAlgebra
2018-08-29 22:34:41 +00:00
penalty() = norm(m.W) + norm(m.b)
loss(x, y) = crossentropy(softmax(m(x)), y) + penalty()
2018-02-09 19:00:26 +00:00
```
When working with layers, Flux provides the `params` function to grab all
2018-08-29 22:34:41 +00:00
parameters at once. We can easily penalise everything with `sum(norm, params)`.
2018-02-09 19:00:26 +00:00
```julia
julia> params(m)
2-element Array{Any,1}:
param([0.355408 0.533092; … 0.430459 0.171498])
param([0.0, 0.0, 0.0, 0.0, 0.0])
2018-08-29 22:34:41 +00:00
julia> sum(norm, params(m))
2018-02-09 19:00:26 +00:00
26.01749952921026 (tracked)
```
Here's a larger example with a multi-layer perceptron.
```julia
m = Chain(
Dense(28^2, 128, relu),
Dense(128, 32, relu),
Dense(32, 10), softmax)
2018-08-29 22:34:41 +00:00
loss(x, y) = crossentropy(m(x), y) + sum(norm, params(m))
2018-02-09 19:00:26 +00:00
loss(rand(28^2), rand(10))
```
2018-06-26 13:35:03 +00:00
One can also easily add per-layer regularisation via the `activations` function:
```julia
2019-09-10 14:17:07 +00:00
julia> using Flux: activations
2018-06-26 13:35:03 +00:00
julia> c = Chain(Dense(10,5,σ),Dense(5,2),softmax)
2019-09-10 14:17:07 +00:00
Chain(Dense(10, 5, σ), Dense(5, 2), softmax)
2018-06-26 13:35:03 +00:00
julia> activations(c, rand(10))
3-element Array{Any,1}:
2019-09-10 14:17:07 +00:00
Float32[0.84682214, 0.6704139, 0.42177814, 0.257832, 0.36255655]
Float32[0.1501253, 0.073269576]
Float32[0.5192045, 0.48079553]
2018-06-26 13:35:03 +00:00
2018-08-29 22:34:41 +00:00
julia> sum(norm, ans)
2019-09-10 14:17:07 +00:00
2.1166067f0
2018-06-26 13:35:03 +00:00
```