Flux.jl/test/cuda/cudnn.jl

49 lines
1.1 KiB
Julia
Raw Normal View History

using Flux, Flux.Tracker, CuArrays, Test
2018-07-04 13:27:43 +00:00
using Flux.Tracker: TrackedArray, data
2018-01-30 13:12:33 +00:00
2018-06-22 12:49:18 +00:00
@testset "CUDNN BatchNorm" begin
2018-11-10 06:22:23 +00:00
@testset "4D Input" begin
2018-11-10 08:30:25 +00:00
x = TrackedArray(Float64.(collect(reshape(1:12, 2, 2, 3, 1))))
2018-11-10 06:22:23 +00:00
m = BatchNorm(3)
cx = gpu(x)
cm = gpu(m)
2018-11-10 06:22:23 +00:00
y = m(x)
cy = cm(cx)
2018-11-10 06:22:23 +00:00
@test cy isa TrackedArray{Float32,4,CuArray{Float32,4}}
2018-11-10 06:22:23 +00:00
@test cpu(data(cy)) data(y)
2018-11-10 06:22:23 +00:00
g = rand(size(y)...)
Flux.back!(y, g)
Flux.back!(cy, gpu(g))
2018-11-10 06:22:23 +00:00
@test m.γ.grad cpu(cm.γ.grad)
@test m.β.grad cpu(cm.β.grad)
@test x.grad cpu(x.grad)
end
2018-11-10 08:30:25 +00:00
2018-11-10 06:22:23 +00:00
@testset "2D Input" begin
2018-11-10 08:30:25 +00:00
x = TrackedArray(Float64.(collect(reshape(1:12, 3, 4))))
2018-11-10 06:22:23 +00:00
m = BatchNorm(3)
cx = gpu(x)
cm = gpu(m)
y = m(x)
cy = cm(cx)
@test cy isa TrackedArray{Float32,2,CuArray{Float32,2}}
@test cpu(data(cy)) data(y)
g = rand(size(y)...)
Flux.back!(y, g)
Flux.back!(cy, gpu(g))
@test m.γ.grad cpu(cm.γ.grad)
@test m.β.grad cpu(cm.β.grad)
@test x.grad cpu(x.grad)
end
2018-01-30 13:12:33 +00:00
end