48 lines
1.1 KiB
Markdown
48 lines
1.1 KiB
Markdown
![]() |
# Regularisation
|
||
|
|
||
|
Applying regularisation to model parameters is straightforward. We just need to
|
||
|
apply an appropriate regulariser, such as `norm`, to each model parameter and
|
||
|
add the result to the overall loss.
|
||
|
|
||
|
For example, say we have a simple regression.
|
||
|
|
||
|
```julia
|
||
|
m = Dense(10, 5)
|
||
|
loss(x, y) = crossentropy(softmax(m(x)), y)
|
||
|
```
|
||
|
|
||
|
We can regularise this by taking the (L2) norm of the parameters, `m.W` and `m.b`.
|
||
|
|
||
|
```julia
|
||
|
penalty() = norm(m.W) + norm(m.b)
|
||
|
loss(x, y) = crossentropy(softmax(m(x)), y) + penalty()
|
||
|
```
|
||
|
|
||
|
When working with layers, Flux provides the `params` function to grab all
|
||
|
parameters at once. We can easily penalise everything with `sum(norm, params)`.
|
||
|
|
||
|
```julia
|
||
|
julia> params(m)
|
||
|
2-element Array{Any,1}:
|
||
|
param([0.355408 0.533092; … 0.430459 0.171498])
|
||
|
param([0.0, 0.0, 0.0, 0.0, 0.0])
|
||
|
|
||
|
julia> sum(norm, params(m))
|
||
|
26.01749952921026 (tracked)
|
||
|
```
|
||
|
|
||
|
Here's a larger example with a multi-layer perceptron.
|
||
|
|
||
|
```julia
|
||
|
m = Chain(
|
||
|
Dense(28^2, 128, relu),
|
||
|
Dense(128, 32, relu),
|
||
|
Dense(32, 10), softmax)
|
||
|
|
||
|
ps = params(m)
|
||
|
|
||
|
loss(x, y) = crossentropy(m(x), y) + sum(norm, ps)
|
||
|
|
||
|
loss(rand(28^2), rand(10))
|
||
|
```
|