Flux.jl/docs/src/models/regularisation.md

48 lines
1.1 KiB
Markdown
Raw Normal View History

2018-02-09 19:00:26 +00:00
# Regularisation
Applying regularisation to model parameters is straightforward. We just need to
apply an appropriate regulariser, such as `norm`, to each model parameter and
add the result to the overall loss.
For example, say we have a simple regression.
```julia
m = Dense(10, 5)
loss(x, y) = crossentropy(softmax(m(x)), y)
```
We can regularise this by taking the (L2) norm of the parameters, `m.W` and `m.b`.
```julia
penalty() = norm(m.W) + norm(m.b)
loss(x, y) = crossentropy(softmax(m(x)), y) + penalty()
```
When working with layers, Flux provides the `params` function to grab all
parameters at once. We can easily penalise everything with `sum(norm, params)`.
```julia
julia> params(m)
2-element Array{Any,1}:
param([0.355408 0.533092; … 0.430459 0.171498])
param([0.0, 0.0, 0.0, 0.0, 0.0])
julia> sum(norm, params(m))
26.01749952921026 (tracked)
```
Here's a larger example with a multi-layer perceptron.
```julia
m = Chain(
Dense(28^2, 128, relu),
Dense(128, 32, relu),
Dense(32, 10), softmax)
ps = params(m)
loss(x, y) = crossentropy(m(x), y) + sum(norm, ps)
loss(rand(28^2), rand(10))
```